Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Information

Novel Core–Shell Heterostructure of Multi–walled Carbon Nanotube@Graphene Oxide Nanoribbons as the Potential Supercapacitor Material

Lu–Yin Lin,^{§a} Min–Hsin Yeh,^{§a} Jin–Ting Tsai,^b Yuan-Han Huang,^b Chia–Liang Sun,*^{b,c} and Kuo–Chuan Ho**^a

^a Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
^b Department of Chemical and Materials Engineering, Chang Gung University, Tao-Yuan 333, Taiwan
^c Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, Tao-Yuan 333, Taiwan

* To whom correspondence should be addressed: <u>sunchialiang@gmail.com</u> (C. L. Sun) ** To whom correspondence should be addressed: <u>kcho@ntu.edu.tw</u> (K. C. Ho) §These authors contributed equally

Figure S1 BJH adsorption pore size distribution of MWCNT@GONR.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S2 Comparison of the specific surface area (SSA) values of MWCNT and MWCNT@GONR samples.

Figure S3 I-V measurement result of one single GONR and the electrodes were made by e-beam lithography. The resistance is approximately $2 M\Omega$.

Figure S4 GONR ensembles between two gold electrodes made by photolithography. The resistance values are approximately several tens of $M\Omega$.