Electronic Supplementary Information

Non-Precious Ir-V Bimetallic Nanoclusters Assembled on Reduced Graphene Oxide Nanosheets as Catalysts for the Oxygen Reduction Reaction

Ruizhong Zhang, ¹,² and Wei Chen*¹

¹State Key Laboratory of Electroanalytical Chemistry, Changchun institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China, and

²University of the Chinese Academy of Sciences, Beijing 100039, China

E-mail: weichen@ciac.jl.cn
Fig. S1 TEM image of rGO-supported Ir₃V nanoclusters. (a) Ir₂₁V/rGO, (b) Ir₁₄V/rGO, (c) Ir₁₁V/rGO.
Fig. S2 UV-Vis absorption spectra of GO and the Ir,V/rGO hybrids.
Fig. S3 Ir 4f and C 1s XPS spectra of Ir$_x$V nanoclusters supported on rGO. (a, b) Ir$_{21}$V/rGO; (c, d) Ir$_{14}$V/rGO; (e, f) Ir$_{11}$V/rGO.
Fig. S4 CO stripping cyclic voltammograms of the as-synthesized Ir/rGO and Ir_xV/rGO in 0.1 M HClO₄ at a potential scan rate of 50 mV/s.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013
Fig. S5 Steady-state ORR polarization curves of disk (I_d), and ring electrode (I_r) from Ir$_x$V/rGO in O$_2$-saturated 0.1 M KOH at different rotation rates. (a) Ir/rGO; (b) Ir$_{11}$V/rGO; (c) Ir$_{14}$V/rGO; and (d) Ir$_{21}$V/rGO.
Fig. S6 Rotating disk electrode linear sweep voltammograms at various rotation rates and the Koutecky-Levich plots obtained on Ir\textsubscript{x}V-rGO. (a, b) Ir/rGO; (c, d) Ir\textsubscript{11}V/rGO; (e, f) Ir\textsubscript{14}V/rGO; (g, h) Ir\textsubscript{21}V/rGO.