Supporting Information

Combination of Al-Doped ZnO and a Conjugated Polyelectrolyte interlayers for small molecule solution-processed solar cells with inverted structure

Jie Min*, Hong Zhang1, Tobias Stubhan1, Yuriy N, Luponosov3, Mario Kraft5, Sergei A. Ponomarenko3,4, Tayebeh Ameri1, Ullrich Scherf5, and Christoph J. Brabec1,2

1Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
2Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstraße 2a, 91058 Erlangen, Germany
3Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russia
4Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
5Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology (IfP), Bergische Universität Wuppertal, Gaußstraße 20, 42097 Wuppertal, Germany

E-mail: Min.Jie@ww.uni-erlangen.de (J. Min)
Figure S1. Optical transmittance spectra of the AZO and AZO/P3TMAHT layers on ITO-substrates. (Due to the slight difference between the thickness of the ITO-substrates, the ITO has less transmittance than ITO/AZO and ITO/AZO/P3TMAHT)

Figure S2. J-V characteristics of conventional device (ITO/P3TMAHT /BHJ/Ca/Ag) using different speeds (doctor-blade) for P3TMAHT layer.
Figure S3. J-V characteristics of conventional device (ITO/PEDOT/BHJ/Ca/Ag) without encapsulation in air.

Figure S4. J-V characteristics of inverted device (ITO/AZO/P3TMAHT/BHJ/MoO$_3$/Ag) without encapsulation in air.