Electronic Supplementary Information

Hybrid Networks Constructed from Tetrahedral Silicon-Centered Precursors and Cubic POSS-Based Building Blocks via Heck Reaction:

Porosity, Gas Sorption, and Luminescence

Dengxu Wang, Wenyan Yang, Liguo Li, Xian Zhao, Shengyu Feng,* and Hongzhi Liu*

*a Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China

*b State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P. R. China

*Corresponding Author. Tel: +86 531 88364866. Fax: +86 531 88564464. E-mail: fsy@sdu.edu.cn; liuhongzhi@sdu.edu.cn
Table of contents:

Fig. S1. Energy dispersive spectroscopy of HPP-1 to HPP-5

Fig. S2. FT-IR spectrum of HPP-1 to HPP-5

Fig. S3. Solid-state 13C CP/MAS NMR spectra of HPP-1~HPP-5 at a expanded scale from 100 ppm to 160 ppm

Fig. S4. Nitrogen sorption isotherms of HPP-1 (a) and (b) HPP-2. Filled and empty symbols denote adsorption and desorption braches. The porosity data of HPP-1: $S_{BET} = 167 \text{ m}^2 \text{ g}^{-1}$, $V_{total} = 0.18 \text{ cm}^3 \text{ g}^{-1}$.

Fig. S5. BET plots of HPP-3 (up, $r = 0.999958$, $C = 290.91$), HPP-4 (middle, $r = 0.999956$, $C = 299.075$) and HPP-5 (bottom, $r = 0.999927$, $C = 298.54$)

Fig. S6. TGA curves of OVS and HPP-1~HPP-5 under N$_2$ (10 °C min$^{-1}$)

Fig. S7. The XRD pattern of HPP-1 to HPP-5

Fig. S8. FE-SEM images of a) HPP-4 and b) HPP-5

Fig. S9. Gas sorption isotherms of HPP-5. (a) H$_2$ adsorption isotherm at 77 K. (b) CO$_2$ adsorption and desorption isotherm, and CH$_4$ adsorption isotherm at 298 K. Filled and empty symbols denote adsorption and desorption branches, respectively.

Fig. S10. (a) H$_2$ adsorption isotherm of HPP-5 at 87 K; (b) Isosteric heats of sorption for H$_2$ on HPP-5.

Fig. S11. Toth model fitting of CO$_2$ (a) and CH$_4$ (b) adsorption isotherms of HPP-5 at 298 K

Fig. S12. Fluorescent spectra of monomers, 1~5 in the solid state (excited at 310 nm)

Fig. S13. Fluorescence microscopic images of (a) HPP-1, (b) HPP-2 and (c) HPP-3
Fig. S1. Energy dispersive spectroscopy of HPP-1 to HPP-5
Fig. S2. FT-IR spectrum of HPP-1 to HPP-5
Fig. S3. Solid-state 13C CP/MAS NMR spectra of HPP-1–HPP-5 at a expanded scale from 100 ppm to 160 ppm.
Fig. S4. Nitrogen sorption isotherms of HPP-1 (a) and (b) HPP-2. Filled and empty symbols denote adsorption and desorption branches. The porosity data of HPP-1: $S_{\text{BET}} = 167 \text{ m}^2 \text{ g}^{-1}$, $V_{\text{total}} = 0.18 \text{ cm}^3 \text{ g}^{-1}$.
Fig. S5. BET plots of HPP-3 (up, $r = 0.999958$, $C = 290.91$), HPP-4 (middle, $r = 0.999956$, $C = 299.075$) and HPP-5 (bottom, $r = 0.999927$, $C = 298.54$)
Fig. S6. TGA curves of OVS and HPP-1~HPP-5 under N₂ (10 °C min⁻¹)

Fig. S7. The XRD pattern of HPP-1 to HPP-5
Fig. S8. FE-SEM images of a) HPP-4 and b) HPP-5

Fig. S9. Gas sorption isotherms of HPP-5. (a) H$_2$ adsorption isotherm at 77 K. (b) CO$_2$ adsorption and desorption isotherm, and CH$_4$ adsorption isotherm at 298 K. Filled and empty symbols denote adsorption and desorption branches, respectively.
Fig. S10. (a) H₂ adsorption isotherm of HPP-5 at 87 K; (b) Isosteric heats of sorption for H₂ on HPP-5.

Henry’s Law selectivity of CO₂ over CH₄ in HPP-5 at 298 K

A nice fitting of CO₂ and CH₄ isotherms has been calculated based on Toth isotherm model.¹,²

\[
q = q_{\text{sat}} \frac{b^{1/\alpha} P}{\left(1 + b^{1/\alpha}\right)^{1/t}}
\]

where \(q\) is the uptake in mmol g⁻¹, \(q_{\text{sat}}\) is the saturation uptake in mmol g⁻¹, \(P\) is the pressure in torr, \(t\) and \(b\) are parameters which are specific for adsorbent pairs.

The Henry law constant \(K\), quantifies the extent of the adsorption of a given adsorbate by a solid. The magnitude of \(K\) depends on the properties of both adsorbate and solid. For the Toth isotherm, the Henry law constant is defined by the following equation:

\[
K = \lim_{P \to 0} \left(\frac{dq}{dP} \right) = b^{1/\alpha} q_{\text{sat}}
\]

Finally, the Henry’s Law selectivity \(S_{\alpha/\beta}\) of gas \(\alpha\) over \(\beta\) is given by the following equation:

\[
S_{\alpha/\beta} = \frac{K_{\alpha}}{K_{\beta}}
\]
Fig. S11. Toth model fitting of CO$_2$ (a) and CH$_4$ (b) adsorption isotherms of HPP-5 at 298 K.
Fig. S12. Fluorescent spectra of monomers, 1–5 in the solid state (excited at 310 nm)

Fig. S13. Fluorescence microscopic images of (a) HPP-1, (b) HPP-2 and (c) HPP-3

References
