Electronic Supplementary Information (ESI)

Electrospun α-Fe$_2$O$_3$ Nanostructures for Supercapacitor Applications

G. Binitha,a M. S. Soumya,a Asha Anish Madhavan,a P. Praveen,a A. Balakrishnan,a K. R. V. Subramanian,a M. V. Reddy,b Shantikumar V. Nair,a A. Sreekumaran Nair,a,* and N. Sivakumara,*

aNanosolar Division, Amrita Centre for Nanoscience and Molecular Medicine, Ponekkara, Kochi, India.

Email: nsivakumar@amrita.edu.sg (N. Sivakumar); sreekumarannair@aims.amrita.edu (A. Sreekumaran Nair)

Fax: +91-484-2802020; Tel: +91-484-2802020

bDepartment of Physics, National University of Singapore, Singapore 117542.
ESI 1

EDX spectra of α-Fe₂O₃ PF.
EDX spectra of α-Fe₂O₃ NG.
XPS spectrum (wide) of the \(\alpha\text{-Fe}_2\text{O}_3 \) PFS (black) and NGs (red) nanostructures showing the elemental composition. The spectrum also indicates the presence of a small amount of adventitious C1s feature.
CV curves of PF electrode at different cycle number (a). CV curves of NG electrode at different cycle number (b).
A comparison of the CV traces of PF, NG and the Ni substrate at a scan rate of 100 mV/s. It is obvious from the traces that the electrochemical activity of the substrate is negligible in comparison to that of the metal oxides.