Supporting Information

Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions

Hongliang Jiang, Yunhe Su, Yihua Zhu*, Jianhua Shen, Xiaoling Yang*, Qian Feng and Chunzhong Li

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.

*To whom correspondence should be addressed.

E-mail: yhzhu@ecust.edu.cn (Prof. Y. H. Zhu) and xlyang@ecust.edu.cn (Prof. X. L. Yang)

Fax: +86 21 64250624
Figure S1. SEM images of (a) PS colloidal spheres and (b) composites of PVA and PS. Inset: an optical photo of the composites of PVA and PS.

Figure S2. SEM images of (a) HP-Co-CN-550, (b) HP-Co-CN-800, and (c) HP-Co-1000.
Figure S3. The thermogravimetric analysis (TGA) of PS, PVA, and PS/PVA.

Table 1. Atomic concentrations (at%) of C, Co, and heterocyclic N components of all as-prepared samples from XPS analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Co</th>
<th>C</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-Co-CN-800</td>
<td>0.22</td>
<td>77.14</td>
<td>10.13</td>
<td>4.39</td>
<td>2.14</td>
<td>2.36</td>
<td>1.24</td>
</tr>
<tr>
<td>HP-Co-CN-900</td>
<td>0.35</td>
<td>81.85</td>
<td>9.08</td>
<td>3.07</td>
<td>1.91</td>
<td>3.57</td>
<td>0.53</td>
</tr>
<tr>
<td>HP-Co-CN-1000</td>
<td>0.18</td>
<td>83.72</td>
<td>6.80</td>
<td>0.92</td>
<td>2.01</td>
<td>2.70</td>
<td>1.17</td>
</tr>
<tr>
<td>HP-CN</td>
<td>0</td>
<td>82.15</td>
<td>9.12</td>
<td>3.15</td>
<td>1.87</td>
<td>3.51</td>
<td>0.59</td>
</tr>
<tr>
<td>Co-CN</td>
<td>0.3</td>
<td>83.12</td>
<td>9.65</td>
<td>3.40</td>
<td>1.95</td>
<td>3.47</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Figure S4 EDS elemental mapping indicating the distribution of N, O, and Co in HP-Co-CN-900.

Figure S5. RDE linear sweep voltammograms recorded for HP-Co-CN-800 and HP-Co-CN-1000 supported on a GC electrode in an O$_2$-saturated 0.1M KOH solution at a scan rate of 10 mV s$^{-1}$ and different rotation rates.
Figure S6. (a) Low-magnification and (b) high-magnification SEM images of as-synthesized HP-CNPs. (c) SEM images of the Co-CNPs. (d) N$_2$ adsorption–desorption isotherms and the corresponding pore size distribution (inset) of the Co-CNPs.

Figure S7. Linear sweep voltammograms recorded for HP-CNPs and Co-CNPs supported on a GC electrode (c) K-L plots and (d) electrochemical activity given as the kinetic current density (J_k) at -0.5 V from HP-CNPs, Co-CNPs, and HP-Co-CNPs, respectively.
Figure S8. (a) Cyclic voltammograms of Pt/C and (b) linear sweep voltammograms of HP-Co-CN-900 in O₂- or N₂-saturated 0.1 M KOH solutions as well as O₂-saturated 0.1 M KOH solution with 3 M CH₃OH.

Figure S9. CV of HP-Co-CN-900 before and after stability test (2000 cycles in oxygen-saturated 0.1 M KOH at a scan rate of 100 mV s⁻¹).