Electronic Supplementary Information for the manuscript

CdS-decorated UiO-66(NH₂) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols

Lijuan Shen,a Shijing Liang,a Weiming Wu,a Ruowen Liang,a Ling Wu a,b,*

a: Research Institute of Photocatalysis, Fujian Provincial Key Laboratory of Photocatalysis--State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002, P. R. China

b: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

* Corresponding Author. Tel.: +86 591 83779105; E-mail: wuling@fzu.edu.cn
Fig. S1 Photocatalytic selective oxidation of benzyl alcohol over the sample CdS-U6 (8 mg) with different illumination time ($\lambda \geq 420$ nm).

Fig. S2 Photocatalytic selective oxidation of benzyl alcohol over the sample CdS-U6 with different catalyst amount under visible light irradiation for 4h ($\lambda \geq 420$ nm).
Fig. S3 Mott-Schottky plot of UiO-66(NH$_2$) in 0.2 M Na$_2$SO$_4$ aqueous solution (pH = 6.8).

Fig. S4 XPS patterns of CdS-U6 before and after the photocatalytic reaction.
Fig. S5 Reusability of commercial CdS for the photocatalytic selective oxidation of benzyl alcohol.

Fig. S6 ESR spectrum of the radical adduct trapped by DMPO (DMPO-OH) in BTF over CdS-U6.