Supporting information

Unique Hydrogenated Ni-NiO Core-Shell 1D Nano-heterostructures With Superior Electrochemical Performance as Supercapacitor

Ashutosh K. Singh, ‡,† Debasish Sarkar, ‡,† Gobinda Gopal Khan, #,‡,* and Kalyan Mandal †

† Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098, India

Center for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700 098, India

*To whom correspondence should be addressed

Center for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700 098, India

* E-mail: gobinda.gk@gmail.com, Corresponding author.
MATERIAL CHARACTERIZATION.

Figure S1. FESEM micrograph of the as prepared Ni NWs.

Figure S2. The XRD pattern of the as-prepared H-Ni/NiO core/shell NHs.
Figure S3. The EDAX spectrum of the H-Ni/NiO core/shell NHs.

ELECTROCHEMICAL ANALYSIS

Figure S4. Peak current (I) vs. square root of scan rate (f') plot for both types of capacitors.
Figure S5. Cyclic performance of H-Ni/NiO core/shell NHs at a current density of 8.6 Ag⁻¹. The inset shows the charging/discharging curves for last 10 cycles of H-Ni/NiO core/shell NHs at a current density of 8.6 Ag⁻¹.