Electronic Supplementary Information

Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium-sulfur batteries

Xiaodan Huang, Bing Sun, Kefei Li, Shuangqiang Chen, Guoxiu Wang* a
Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, NSW 2007, Australia. E-mail: Guoxiu.Wang@uts.edu.au (GXW)

Figure S-1. (a) TEM image of MGP. (b) TEM image of MGP-S.
Figure S-2. Cross-section SEM image of MGP electrode.
Figure S-3. TGA and electrochemical results of MGP-S. (a) is the TGA curve, showing a S content of 29%. (b) shows the charge-discharge curves in the first cycle. (c) is the cycling performance result, displaying a high initial discharge capacity of 1459 mAh/g and a good cycle stability.
Figure S-4. SAED and element mapping results of MGP-S. (a) is the low-magnification TEM image and SAED pattern (insert). (b) shows the carbon element mapping analysis result. (c) shows the carbon element mapping analysis result.
Figure S-5. SEM element mapping results of MGP-S. (a) The large area SEM view of MGP-S sample. (b) Carbon element mapping image. (c) Sulfur element mapping image. (d) The corresponding EDS spectrum.
Figure S-6. Cycle voltammetry curves of MGP-S electrode (a) and bulk S electrode (b).
Figure S-7. The coulombic efficiency of MGP-S electrode.