The specific capacitance of these samples from galvanostatic charge/discharge curves are calculated as

\[Cs = \frac{I \Delta t}{m \Delta V} \]

where \(I \) is the constant current and \(m \) is the total mass for both carbon electrodes, \(\Delta t \) is the discharge time and \(\Delta V \) is the voltage change during the discharge process.

The specific capacitance derived from cyclic voltammograms as

\[Cs = \frac{A}{f \cdot \Delta V \cdot m} \]

where \(A \) is the integral areas of the cyclic voltammogram loops, \(f \) is the scan rate, \(\Delta V \) is the voltage window, and \(m \) is the mass of the electrode.

The electron transfer numbers at these three electrodes can be derived from the equation of Koutechy-Levich plot \(^1,^2\) showing blow:
in which \(j \) is the current density at appointed voltage, \(j_k \) is the kinetic current and \(\omega \) is the electrode rotating rate (rpm). The parameter \(B \) at different applied voltage could be obtained from the slope of the K-L plots in Figure S7. Meanwhile, the electron transfer number at different voltage is connected with parameter \(B \) according to the Levich equation as following in the alkaline aqueous solution \(^2\):

\[
B = 0.2nF(D_{O_2})^{2/3}v^{-1/6}C_{O_2}
\]

where \(n \) represents the overall electron transfer number per oxygen molecule, \(F \) is the Faraday constant with the value of 96485 C mol\(^{-1}\), \(D_{O_2} \) is the diffusion coefficient of \(O_2 \) in 0.1 M KOH (1.9 \(\times \) \(10^{-5} \) cm\(^2\) s\(^{-1}\)), \(v \) is the kinetic viscosity (0.01 cm\(^2\) s\(^{-1}\)), and \(C_{O_2} \) is the bulk concentration of \(O_2 \) (1.2 \(\times \) \(10^{-6} \) mol cm\(^{-3}\)). The constant 0.2 is adopted when the rotation speed is expressed in rpm in alkaline aqueous solution.

Figure S1. Photo image of the gel-like GO sediment before and after freezing.
Figure S2. Photo image of the frozen GO monolith before thermal treatment (a) and the as-prepared porous graphene monolith after thermal treatment (b)
Figure S3. Magnified SEM images of B-G 600 (a), B-G 800 (b), and STEM image of B-G 800 (c).
Figure S4. C1s spectrum of (a) B-G 600 and (b) B-G 800.

Figure S5. Cyclic voltammetry (CV) curves of 3-D porous graphene framework in a three electrode system in 2 M H$_2$SO$_4$ solution at the scan rate of 10, 30, 50, and 100 mV s$^{-1}$. (a) B-G 400, (b) B-G 600, and (c) B-G 800.
Figure S6. Linear sweep voltammetry curves of ORR at several designed rotation speed in the O$_2$-saturated 0.1 M KOH solution with the scan rate of 10 mV s$^{-1}$. a) B-G 400, (b) B-G 600, and (c) B-G 800.
Figure S7. K-L plots of ORR at different applied potential of B-G 400 (a), B-G 600 (b), and B-G 800 (c).

References:
