Supporting Information

Understanding the origin of high-rate intercalation pseudocapacitance in Nb$_2$O$_5$ crystals

Andrew A. Lubimtsev1,2, Paul R. C. Kent1,4, B. G. Sumpter1 and P. Ganesh1*

1Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN 37830

2Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802

4Computer Science and Mathematics Division, Oak Ridge National Laboratory, TN 37830
FIGURE S1: (a) Overlapping trajectories from a T=300K run for m-Nb$_2$O$_5$. Two specific Li-atoms are drawn as large spheres to explicitly show their diffusive path in the crystal structure (b) Overlapping trajectories in the o-Nb$_2$O$_5$ at T=600K at a different orientation show how the lithium motion is confined to the 2D oxygen plane without the niobium atoms.
FIGURE S2: (a) formation energy and (b) goodness of fit for the cluster expansion Hamiltonian of Li$_x$Nb$_2$O$_5$ in the m-Nb$_2$O$_5$ host structure.

FIGURE S3: Effective cluster interactions are plotted for the m-phase and shows convergence with cluster diameter.