Electronic Supplementary Information (ESI)

Fabrication of sandwich structural electrode for high-performance lithium-sulfur battery

Bing Ding, Guiyin Xu, Laifa Shen, Ping Nie, Pengfei Hu, Hui Dou, and Xiaogang Zhang*

*College of Material Science and Engineering and Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China. Fax: 86-02552112626; Tel: 86-02552112918; E-mail: azhang@163.com

Laboratory for Microstructures, Shanghai University, Shanghai 200444, P. R. China

Fig. S1 (a, b) SEM images and (c, d) TEM images of Graphene/S composite.
Fig. S2 STEM image of Graphene/TiO$_2$/S nanocomposite.

Fig. S3 TG curves of Graphene/TiO$_2$/S nanocomposite.
Fig. S4 CV curves of Graphene/S electrode at a scaning rate of 0.2 mV s\(^{-1}\).

Fig. S5 Electrochemical behaviors of Graphene/TiO\(_2\) electrode: (a) Galvanostatic charge-discharge profiles at a current rate of 0.5 C (1C=170 mA g\(^{-1}\)). (b) Cycling performance at different current densities. (All measurements were conducted in the same potential window and electrolyte with that of Graphene/TiO\(_2\)/S electrode.)

As an electrochemically active host, the cycling stability and rapid ionic/electronic transport of Graphene/TiO\(_2\) electrode is critical to the electrochemical performances of Graphene/TiO\(_2\)/S. As shown in Fig. S4, the Graphene/TiO\(_2\) electrode exhibits...
typical electrochemical behaviors of anatase TiO$_2$. Fig. S3a shows the galvanostatic charge/discharge profiles at a current rate of 0.5 C. The two voltage plateaus appear at approximately 1.7 and 1.9 V are related to the phase transition between the tetragonal and orthorhombic phases with Li insertion into anatase TiO$_2$. The Graphene/TiO$_2$ electrode shows a first discharge capacity of 209 mAh g$^{-1}$ and a subsequent charge capacity of 114 mAh g$^{-1}$. The high irreversible capacity loss could be contributed to the formation of an inactive solid/electrolyte interphase (SEI) on the surface of the TiO$_2$ nanocrystal. In the 5th cycle, the discharge capacity decreased to 95 mAh g$^{-1}$ with a corresponding charge capacity of 89 mA h g$^{-1}$, leading to a much higher Coulombic efficiency of 94%. Compared with previous reports, the Graphene/TiO$_2$ electrode shows lower specific capacities. This may due to two reasons: (1) as shown in the TGA curve (Fig. S1), the content of active TiO$_2$ in the Graphene/TiO$_2$ (62.5 wt%) is relatively lower. (2) The potential window (1.5–3 V) is much narrower than that in previous reports. However, as depicted in Fig. S4b, the Graphene/TiO$_2$ electrode exhibits excellent cycling stability and rate performance. For the Graphene/TiO$_2$ electrode, the mesoporous and sandwich nanostructure could favor rapid diffusion of the electrolyte and lead to shortened diffusion path. Meanwhile, the highly conductive graphene layer act as a continuous conductor to facilitate easier electron transport.
Table S1 Comparison of electrochemical performances of sandwich structural Graphene/TiO$_2$/S electrode with the results of similar reports

<table>
<thead>
<tr>
<th>Graphene-based hosts</th>
<th>Cycling Performance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO with epoxy and hydroxyl groups</td>
<td>954 mA h g$^{-1}$/0.1 C/50th cycle</td>
<td>S8</td>
</tr>
<tr>
<td>Sulfur assisted exfoliated graphene</td>
<td>615 mA h g$^{-1}$/1 C/100th cycle</td>
<td>S9</td>
</tr>
<tr>
<td>PEG modified GO-carbon</td>
<td>520 mA h g$^{-1}$/0.2 C/100th cycle</td>
<td>S10</td>
</tr>
<tr>
<td>Graphene reduced by hydrazine</td>
<td>819 mA h g$^{-1}$/0.05 C/100th cycle</td>
<td>S11</td>
</tr>
<tr>
<td>Nafion coated Graphene</td>
<td>662 mAg$^{-1}$/1 C/100th cycle</td>
<td>S12</td>
</tr>
<tr>
<td>Hydrofluoric acid treated graphene</td>
<td>800 mA h g$^{-1}$/0.1 C/50th cycle</td>
<td>S13</td>
</tr>
<tr>
<td>KOH activated graphene</td>
<td>829 mA h g$^{-1}$/0.1 C/50 cycle</td>
<td>S13</td>
</tr>
<tr>
<td>Sandwich structural Graphene/TiO$_2$</td>
<td>765 mA h g$^{-1}$/0.5 C/100th cycle</td>
<td>S14</td>
</tr>
<tr>
<td></td>
<td>737 mAh g$^{-1}$/0.5 C/ 100th cycle</td>
<td>this work</td>
</tr>
</tbody>
</table>
References: