Supporting information

In situ synthesis of well crystallized rhodium sulfide/carbon composite nanospheres as catalyst for hydrochloric acid electrolysis

Yanjuan Lia, Nan Lia,*, Kazumichi Yanagisawab, Xiang Dingc, Xiaotian Lia

aCollege of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.

bResearch Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520, Japan

cAnalysis and Testing Center, General Research Institute for Non-ferrous Metals, No.2 Xin Jie Kou Wai Str., Beijing, 100088, P. R. China

*Corresponding author. Phone: +86 43185094856. Fax: +86 43185094856.

E-mail address: lin@jlu.edu.cn
Fig. S1 EDX pattern of Rh$_x$S$_y$/C nanocomposite synthesized in i-propanol with S/Rh = 2.25.
Fig. S2 FTIR spectra of pure KBr (a) and rhodium sulfide/carbon composites synthesized in ethanol (b), i-propanol (c), i-amyl alcohol (d), n-butanol (e) and n-propanol (f).
Fig. S3 TEM images of Rh$_x$S$_y$/C nanocomposite synthesized in i-propanol after refluxing in concentrated HCl (a) and aqua regia (b) for 12h.
Fig. S4 SEM image of Rh₅Sₓ/C nanocomposite synthesized in i-propanol after heat-treatment at 600 °C in Ar.
Fig. S5 Representative SEM images of Rh₃S₉/C nanocomposites synthesized in various alcohols. (a-e) are ethanol, n-propanol, n-butanol, i-butanol, and i-amyl alcohol, respectively.