Electronic Supplementary Information

\(\gamma\)-Fe\(_2\)O\(_3\) nanoparticles encaptulated in polypyrrole for solid-state lithium batteries

Jae-Kwang Kim,\(^a\(^{a,b}\) Luis Aguilera,\(^b\) Fausto Croce,\(^c\) Jou-Hyeon Ahn\(^a\(^d\)

\(^a\) Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 689-798 Ulsan, Korea

\(^b\) Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden Fax: +46 31 772 2090; Tel: +46 31 772 33 52; E-mail: jaekwang@chalmers.se

\(^c\) Dipartimento di Farmacia, Università “d'Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

\(^d\) Department of Chemical & Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701, Korea
Figure S1. FT-IR pattern of γ-Fe$_2$O$_3$-PPy core-shell.

Figure S2. TGA curve of γ-Fe$_2$O$_3$-PPy core-shell.
Figure S3. SEM image of γ-Fe$_2$O$_3$-PPy core-shell.

Figure S4. Initial charge-discharge volumetric capacities of Li/GPE/PPy-Fe$_2$O$_3$ cells at different current densities (0.1 and 1 C-rate, RT).
Figure S5. Cycle performance and cumbic efficiency of Li/GPE/PPy-Fe$_2$O$_3$ cells at 0.1C-rate (Room temperature).

Figure S6. Cycle performance of nano sized γ-Fe$_2$O$_3$ cell at 0.1C-rate (Room temperature).
Figure S7. Initial charge-discharge capacity of Li/PPy-Fe$_2$O$_3$ cells with liquid electrolyte (0.1 C-rate, RT).