Supporting Information

Platinum@Regular Indium Oxide Nanoctahedrons as Difunctional Counter Electrode for Dye-Sensitized Solar Cells †

Bo Zhang, *a,b Yu Hang Li,a Ju Hua Zhong,b Hai Min Zhang,c Hui Jun Zhao c and Hua Gui Yang *a,c

a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

b Department of Physics, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

c Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia.

Correspondence and requests for materials should be addressed to H.G. Yang or B. Zhang(email: hgyang@ecust.edu.cn or bo.zhang@ecust.edu.cn).
Fig. S1. Digital images of 3.9wt%Pt@In$_2$O$_3$, 2.9wt%Pt@In$_2$O$_3$, 0.7wt%Pt@In$_2$O$_3$, and commonly used Pt on FTO
Fig. S2. TEM images and Histogram showing Pt nanoparticle size distributions of the synthesized 3.9wt%Pt@In₂O₃ (a, b), 2.9wt%Pt@In₂O₃ (c, d) and 0.7wt%Pt@In₂O₃ (e, f) samples, respectively.
Fig. S3. Electrochemical impedance spectra of the symmetrical cells fabricated with two identical In$_2$O$_3$ nanoctahedrons electrodes, and the insert gives the equivalent circuit.