Supplementary Information

Fe$_2$O$_3$@SnO$_2$ Nanoparticles Decorated Graphene Flexible Films as High-erformance Anode for Lithium-ion Batteries

Shuo Liu, Ronghua Wang, Miaomiao Liu, Jianqiang Luo, Xihai Jin* and Jing Sun*

The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai 200050, China

*Corresponding authors. Tel: +86 21 52412720. Fax: +86 21 52413122.
E-mail address: jingsun@mail.sic.ac.cn, jinxihai@hotmail.com
Fig. S1 N$_2$ adsorption/desorption isotherms of (a) FeOOH nanoparticles and (b) FeOOH@SnO$_2$ nanoparticles.

Fig. S2 Images of water dispersion of FeOOH nanoparticles (left) and FeOOH@SnO$_2$ nanoparticles (middle), dispersion of FeOOH@SnO$_2$ nanoparticles in GO water solution (right).
Fig. S3 TEM images of Fe$_2$O$_3$@SnO$_2$/GS film.

Fig. S4 (a) Cross-section SEM image of Fe$_2$O$_3$/GS film. (b) Top-view SEM image of Fe$_2$O$_3$/GS film. (c) Cross-section SEM image of SnO$_2$/GS film. (d) Enlarged cross-section SEM image of SnO$_2$/GS film.
Fig. S5 First three CV curves of (a) Fe$_2$O$_3$/GS electrode and (b) SnO$_2$/GS electrode at a scan rate of 0.5 mV s$^{-1}$ over the voltage range of 0-3.0 V. The scan direction follows with the arrows.

Fig. S6 Charge-discharge profiles of the bare graphene paper anode at a current density of 100 mA h g$^{-1}$, with a first discharge capacity of 827.4 mA h g$^{-1}$ and a discharge capacity of 67.3 mA h g$^{-1}$ after 5 cycles.

Fig. S7 TGA curves of Fe$_2$O$_3$/GS and SnO$_2$/GS films, revealing that contents of Fe$_2$O$_3$ and SnO$_2$ in the Fe$_2$O$_3$/GS and SnO$_2$/GS composites are 63.82% and 62.32%, respectively.
Fig. S8 EIS spectra and equivalent circuit fitting of Fe$_2$O$_3$ /GS electrode before and after ten cycles at a current density of 100 mA g$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>Rs/Ω</th>
<th>CPE-P/Ω</th>
<th>CPE-T/s</th>
<th>Rct/Ω</th>
<th>Wo-R/Ω</th>
<th>Wo-T/s</th>
<th>Wo-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$ @SnO$_2$ /GS</td>
<td>Before</td>
<td>4.382</td>
<td>0.769</td>
<td>2.62E-5</td>
<td>34.31</td>
<td>403.2</td>
<td>17.38</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>6.08</td>
<td>0.77</td>
<td>4.92E-5</td>
<td>22.57</td>
<td>84.78</td>
<td>0.68</td>
</tr>
<tr>
<td>Fe$_2$O$_3$/GS</td>
<td></td>
<td>5.107</td>
<td>0.694</td>
<td>3.84E-5</td>
<td>66.54</td>
<td>313.2</td>
<td>0.43</td>
</tr>
<tr>
<td>SnO$_2$/GS</td>
<td></td>
<td>6.092</td>
<td>0.661</td>
<td>8.95E-5</td>
<td>41.46</td>
<td>262.1</td>
<td>17.43</td>
</tr>
</tbody>
</table>

Fig. S9 The fitted EIS results from the equivalent circuit.