Supplementary Information

Investigation of the high-temperature redox chemistry of Sr$_2$Fe$_{1.5}$Mo$_{0.5}$O$_{6-\delta}$ via \textit{in situ} neutron diffraction

Daniel E. Bugaris1, Jason P. Hodges2, Ashfia Huq2, W. Michael Chance1, Andreas Heyden3, Fanglin Chen4, Hans-Conrad zur Loye1

1 Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
2 Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3 Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
4 Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Figure S1 Powder neutron diffraction profiles for Sr$_2$Fe$_{1.5}$Mo$_{0.5}$O$_{6-\delta}$ in O$_2$ in the temperature range 500-850°C.
Figure S2 Observed (black crosses), calculated (red line), and difference (blue line) powder neutron diffraction profile for Sr$_2$Fe$_{1.5}$Mo$_{0.5}$O$_6$ in O$_2$ at 850°C, refined in the cubic space group *Pm*-3*m*. The vertical markers correspond to the allowed Bragg reflections.
Figure S3 Observed (black crosses), calculated (red line), and difference (blue line) powder neutron diffraction profile for Sr$_2$Fe$_{1.5}$Mo$_{0.5}$O$_{6.8}$ at 25°C after having been cooled in O$_2$, refined in the tetragonal space group $I4/mcm$. The vertical markers correspond to the allowed Bragg reflections.