Supporting Information

Enhanced Thermoelectric Properties of PEDOT:PSS Nanofilms by Chemical Dedoping Process

By Hongkwan Parka, Seung Hwan Leea, Felix Sunjoo Kimb, Hyang Hee Choia, In Woo Cheongc, Jung Hyun Kima,*

aDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120–749, Republic of Korea
bDepartment of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156–756, Republic of Korea
cDepartment of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702–701, Republic of Korea

AFM images of PEDOT:PSS Nanofilms after post-treatment

Figure S1. AFM images of PEDOT:PSS nanofilms: (a) pristine, (b) DMSO-treated, and (c) treated with a mixture of DMSO/HZ. All images captured an area of 1×1 μm2.
Change of carrier concentration and carrier mobility as a result of the dedoping process.

Figure S2. Carrier concentration and carrier mobility of PEDOT:PSS nanofilms after various post-treatment with different ratios of DMSO/HZ mixture solutions. The concentration and mobility were obtained by Hall-effect measurement.