Supplementary Information

Wide Electrochemical Window Ionic Salt for use in Electropositive Metal Electrodeposition and Solid State Li-ion Batteries

Sankaran Murugesana, Oliver A. Quinteroa, Brendan P. Choua, Penghao Xiaoa, Kyusung Parkb, Justin W. Halla, Richard A. Jonesa, Graeme Henkelmana, John B. Goodenoughb and Keith J. Stevensona*

aDepartment of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, Austin, Texas, 78712, USA

bTexas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States

* Corresponding author: Keith J. Stevenson (stevenson@mail.cm.utexas.edu) (T) +1-512- 232-9160; (F) +1-512-471-8696
Figure S1a. 1H NMR spectrum of PP$_{13}$PF$_6$ in CD$_2$Cl$_2$.

Figure S1b. 13C NMR spectrum of PP$_{13}$PF$_6$ in CD$_2$Cl$_2$.
Figure S1c. 19F NMR spectrum of PP$_{13}$PF$_6$ in CD$_2$Cl$_2$.

Figure S1d. 31P NMR spectrum of PP$_{13}$PF$_6$ in CD$_2$Cl$_2$.
Figure S1e. FTIR (diamond ATR) spectrum of PP$_{13}$PF$_6$.

Figure S1f. Positive ion mass spectrum of PP$_{13}$PF$_6$.
Figure S1g. Negative ion mass spectrum of PP$_{13}$PF$_6$.

Figure S2. XRD of electrodeposited Sn over stainless steel electrode (red line) and blue lines shows the standard Sn (JCPDS#65-2631).
Figure S3. Experimental powder XRD of PP_{13}PF_{6} (red line) compared with the theoretically generated XRD pattern (blue line) using the single crystal structure.

Figure S4. Calculated electrostatic potential of Li showing the lithium vacuum level at 2.33 eV. The Fermi-level is calculated as -0.67 eV.
Figure S5. Calculated electrostatic potential of PP$_{13}$PF$_6$, showing a vacuum level of 2.39 eV and a Fermi-level of -6.20 eV.

Figure S6. Cyclic voltammograms of PP$_{13}$PF$_6$ using the asymmetric cell (Li metal/ PP$_{13}$PF$_6$ + 10wt% LiTFSI)/stainless steel block) with different temperatures at the scan rate of 2 mV/s.
Table S1. Impedance and conductivity data of symmetric and asymmetric cells.

<table>
<thead>
<tr>
<th>Symmetric cell</th>
<th>Temp (°C)</th>
<th>Temp (K)</th>
<th>(1/K)</th>
<th>R_p</th>
<th>Conductivity (σ)</th>
<th>log (σ)</th>
<th>ln (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.7</td>
<td>295.7</td>
<td>0.00338</td>
<td>76718</td>
<td>2.06E-06</td>
<td>-5.6852</td>
<td>-13.091</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>305</td>
<td>0.00328</td>
<td>33994</td>
<td>4.66E-06</td>
<td>-5.3317</td>
<td>-12.277</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>308</td>
<td>0.00325</td>
<td>24387</td>
<td>6.49E-06</td>
<td>-5.18746</td>
<td>-11.945</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>313</td>
<td>0.00320</td>
<td>5059</td>
<td>3.13E-05</td>
<td>-4.50436</td>
<td>-10.372</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>318</td>
<td>0.00315</td>
<td>2158</td>
<td>7.34E-05</td>
<td>-4.13435</td>
<td>-9.520</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asymmetric cell</th>
<th>Temp (°C)</th>
<th>Temp (K)</th>
<th>(1/K)</th>
<th>R_p</th>
<th>Conductivity (σ)</th>
<th>log (σ)</th>
<th>ln (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>298</td>
<td>0.00335</td>
<td>1.08E+05</td>
<td>3.78E-07</td>
<td>-6.42296</td>
<td>-14.789</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>303</td>
<td>0.00330</td>
<td>1.66E+04</td>
<td>9.31E-06</td>
<td>-5.03105</td>
<td>-11.584</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>308</td>
<td>0.00325</td>
<td>9.64E+03</td>
<td>1.61E-05</td>
<td>-4.79401</td>
<td>-11.039</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>313</td>
<td>0.00320</td>
<td>2.24E+03</td>
<td>6.90E-05</td>
<td>-4.16118</td>
<td>-9.581</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>318</td>
<td>0.00314</td>
<td>6.48E+02</td>
<td>2.39E-04</td>
<td>-3.62166</td>
<td>-8.339</td>
</tr>
</tbody>
</table>