Supporting Information

A universal route to fabricate hierarchically ordered macro-/mesoporous oxides with enhanced intrinsic activity

Ying Xin,^a Pin Jiang,^a Mingqiang Yu,^a Huachun Gu,^a Qian Li,^a Zhaoliang Zhang*^{a,b}

^a School of Chemistry and Chemical Engineering, University of Jinan, 336

Nanxinzhuangxi Road, Jinan 250022, China

^b State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing

University of Technology, Nanjing, 210009, China

Contents:

- 1. Tables
- 2. Figures
- 3. References

1. Tables

Table S1 Elemental compositions of hierarchically ordered macro-/mesoporous

Sample	Ce/Ti atomic ratio ^a	Ce/Ti atomic ratio ^b
$Ce_{0.2}TiO_x$	0.2	0.21
$Ce_{0.3}TiO_x$	0.3	0.33
$Ce_{0.5}TiO_x$	0.5	0.51
$Ce_{0.7}TiO_x$	0.7	0.73
$Ce_{1.0}TiO_x$	1.0	1.06

 $Ce_a TiO_x$.

^a: The data are the nominal Ce/Ti atomic ratios in Ce–Ti mixed oxides.

^b: The data were obtained by quantitatively analyzing distribution mapping results.

Table S2 BET surface areas, pore volumes and average pore sizes of the

	BET surface area		Pore volume		Average pore size			
Sample	$[m^2 g^{-1}]$		$[cm^3 g^{-1}]$		[nm]			
	Macropore	Mesopore	Total	Macropore	Mesopore	Total	Macropore ^a	Mesopore
	(> 50 nm)	$(\leq 50 \text{ nm})$		(> 50 nm)	$(\leq 50 \text{ nm})$		(> 50 nm)	$(\leq 50 \text{ nm})$
Ce _{0.2} TiO _x	1.18	55.15	56	0.0282	0.1112	0.140	195	8.2
$Ce_{0.3}TiO_x$	2.25	44.99	46	0.0484	0.0842	0.133	197	11.2
$Ce_{0.5}TiO_x$	1.64	40.88	43	0.0341	0.0640	0.098	197	9.5
$Ce_{0.7}TiO_x$	1.38	26.58	28	0.033	0.0622	0.095	194	15.1
$Ce_{1.0}TiO_x$	1.38	25.72	27	0.031	0.0543	0.085	197	17.0

hierarchically ordered macro-/mesoporous $Ce_a TiO_x$.

^a: Estimated according to the SEM and TEM images.

Sample	BET surface area	Pore volume	Average pore size	
	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	[nm]	
Ce _{0.2} TiO _x -n	120 ^a	0.337	9.3	
Ce _{0.3} TiO _x -n	122 ª	0.424	14.3	
Ce _{0.5} TiO _x -n	79 ^a	0.214	13.7	
Ce _{0.7} TiO _x -n	61	0.146	7.9	
Ce _{1.0} TiO _x -n	25	0.078	12.0	

Table S3. BET surface areas, pore volumes, and average pore sizes of the Ce_aTiO_x -n.

^a: From Ref. S1.

2. Figures

Figure S1

Fig. S1 SEM image of the colloidal crystal template assembled by 389 nm PMMA

spheres.

Fig. S2 Schematic illustration of a self-made wet ammonia gas infiltrationprecipitation device: (a) wet ammonia gas generator; (b) infiltrated-precipitation device; (c) anti-reverse suction flask; (d) scrubbing bottle.

Figure S3

Fig. S3 XRD patterns of the as-fabricated hierarchical macro-/mesoporous $Ce_a TiO_x$.

Figure S4

Fig. S4 SEM images and the corresponding distribution maps of Ce, Ti and O elements for the hierarchical macro-/mesoporous $Ce_a TiO_x$: (a) $Ce_{0.2}TiO_x$; (b)

 $Ce_{0.3}TiO_x$; (c) $Ce_{0.5}TiO_x$; (d) $Ce_{0.7}TiO_x$; (e) $Ce_{1.0}TiO_x$.

Fig. S5 N_2 adsorption/desorption isotherms and pore size distribution curves (insets)

for $Ce_a TiO_x$.

Fig. S6 (a) TEM image and (b) N_2 adsorption/desorption isotherms and pore size distribution curve (inset) of $Ce_{0.3}TiO_x$ -air.

Figure S7

Fig. S7 (a) XRD pattern and (b) TEM image of $Ce_{0.3}TiO_x$ -550, (c) TEM image of $Ce_{0.3}TiO_x$ -650, (d) SEM and (e) TEM images of $Ce_{1.0}TiO_x$ after a mild pressing and grinding.

Figure S8

Fig. S8 SEM images of the hierarchically macro-/mesoporous $Ce_a TiO_x$ after SCR reactions: (a) $Ce_{0.2}TiO_x$; (b) $Ce_{0.3}TiO_x$; (c) $Ce_{0.5}TiO_x$; (d) $Ce_{0.7}TiO_x$; (e) $Ce_{1.0}TiO_x$.

Fig. S9 XRD patterns of the hierarchical macro-/mesoporous unitary oxides.

Fig. S10 SEM images of Mn_2O_3 synthesized using pure ammonia gas (a), $Ce_{0.3}TiO_x$ synthesized using ammonia water (b) and $Ce_{0.3}TiO_x$ synthesized without using wet ammonia gas infiltration-precipitation route (c).

3. References

[S1] P. Li, Y. Xin, Q. Li, Z. P. Wang, Z. L. Zhang and L. R. Zheng, *Environ. Sci. Technol.*, 2012, 46, 9600–9605.