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Figure S1. SEM images of (A) ZnS/CHA-1, (B) ZnS/CHA-2, and (C) ZnS/CHA-3. 
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Figure S2. The XRD patterns of ZnS/CHA-1, ZnS/CHA-2, ZnS/CHA-3 and CdS/ZnO-1. The three 

samples show similar XRD patterns, indicating their similar crystal structures. The biggest feature in the 

XRD pattern of ZnS/CHA is the presence of a very strong low-angle XRD peak at 2 = 6.2. Similar 

XRD feature was also observed for some inorganic-organic hybrid materials, [S2] and it was contributed 

to the formation of mesostructures because of the assembly behavior of the organic amines. 
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Figure S3. The IR spectra of ZnS/CHA-1, ZnS/CHA-2 and ZnS/CHA-3. The presence of CHA in the 

ZnS/CHA nanohybrids were confirmed by IR spectroscopy (see figure). The characteristic absorption 

bands associated with CHA appear in the IR spectrum,[S3] and the stretching vibrations (3175 and 3094 

cm-1) and bending vibrations (1588 and 1453 cm-1) of -NH2, the stretching vibrations (2928 and 2855 

cm-1) of -CH2, and the stretching vibration C-N (1027 cm-1) are all clearly observed. 
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Figure S4. TEM and HRTEM images of (A,B) ZnS/CHA-1, (C,D) ZnS/CHA-2 and (E,F) ZnS/CHA-3. 
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Figure S5. High-resolution XPS spectra of (A) Zn2p, (B) S2p, and (C) N1s for the ZnS/CHA 

nanohybrids. The spectrum for Zn2p exhibits two peaks at 1021.6 and 1044.7 eV, which are assigned to 

the 2p3/2 and 2p1/2 core levels of Zn2+ in ZnS,[S4] respectively. The spectrum for S2p shows a single 

peak at 161.8 eV attributable to S2- in ZnS.[S4] The spectrum for N1s also shows a single peak at 399.4 

eV, which is close to that for alkylamine (399.6 eV).[S3b] This observation suggests that the CHA 

molecules in the ZnS/CHA nanohybrids are not protonated, in agreement with the IR spectra. 
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Figure S6. TGA curves in air for the ZnS/CHA nanohybrid materials. As shown in the figure, the 

weight losses for all the ZnS/CHA nanohybrids occured in a wide temperature mainly range from 150 to 

650 °C. The weight loss is attributed to the decomposition of CHA and the oxidation of ZnS 

nanoparticles to ZnO in the hybrid material. From the weight loss value, the empirical composition of 

the ZnS/CHA-1, ZnS/CHA-2 and ZnS/CHA-3 was determined to be close to (ZnS)(CHA), 

(ZnS)(CHA)0.8 and (ZnS)(CHA)0.75, respectively. 
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Figure S7. High-resolution XPS spectra of (A) Cd3d, (B) Zn2p, (C) S2p, and (D) O1s for the CdS/ZnO 

nanocomposite materials. 
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Figure S8. N2 adsorption/desorption isotherms and the corresponding pore size distribution for (A, B) 

CdS/ZnO-1, (C, D) CdS/ZnO-2 and (E, F) CdS/ZnO-3. The N2 adsorption-desorption curves of 

CdS/ZnO-1, CdS/ZnO-2 and CdS/ZnO-3 exhibit typical type-IV isotherms with an H3 hysteresis loop, 

indicating the presence of mesoporous/macroporous structure in the materials. The corresponding BJH 

pore-size distributions derived from adsorption branch of the isotherm show wide pore-size distributions 

with an average size of ~50 nm, further confirming the existence of mesopores and macropores in the 

materials. This result is also in agreement with the results obtained with TEM images. The BET surface 

areas of CdS/ZnO-1, CdS/ZnO-2 and CdS/ZnO-3 were calculated to be 22, 31 and 24 m2/g, 

respectively. 
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Figure S9. TEM images of (A) CdS/ZnO-1 and (B) CdS/ZnO-2. 
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Figure S10. UV/Vis diffuse reflectance spectra of CdS/ZnO-1, CdS/ZnO-2, CdS/ZnO-3 and pure CdS. 
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Figure S11. (A) XRD pattern (B) TEM image and (C) SEM image of CdS/ZnO-1 after photocatalytic 

reaction.  
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