Supporting Information

Constructing cubic-orthorhombic surface-phase junctions of NaNbO₃

towards significant enhancement of CO₂ photoreduction

Authors:

Peng Li,^a Hua Xu,^b Lequan Liu,^{ad} Tetsuya Kako,^a Naoto Umezawa,^{abc} Hideki Abe^{abc} and Jinhua Ye^{*abd}

a Catalytic Materials Group, Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

b TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China

c PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

d International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

SI-1 Experimental Section

Material preparation.

The NaNbO₃ samples were synthesized via the following method. Firstly, 1.0 g of $(C_2H_5O)_5Nb$ (Strem Chem., USA) and 0.24 g of C_2H_5ONa (Strem Chem., USA) were dissolved in 15 mL of 2-methoxyethanol (Wako Chem., Japan) and stirred for 5 min to form a clear colloid. Then, this solution was added into 50 mL of 2-methoxyethanol solution containing 12.0 g of critic acid (Wako Chem., Japan) and 2.0 mL of ethylene glycol (Wako Chem., Japan). After stirred for 30 minutes, the mixture was heated to 120°C and maintained at this temperature for 20 h to form a solid precursor. Finally, the precursor was oxidized in air at 400 – 600°C for 10 h and a white powder product was obtained.

Sample characterization.

The crystal structure of NaNbO₃ powder was determined with an X-ray diffractometer (X'Pert Powder, PANalytical B.V., Netherlands) with Cu-K α radiation. Transmission electron microscopy images and high-resolution images were recorded with a field emission transmission electron microscope (2100F, JEOL Co., Japan) operated at 200 kV. The diffuse reflection spectra were measured with an integrating sphere equipped UV–visible recording spectrophotometer (UV-2600, Shimadzu Co., Japan) using BaSO₄ as reference and the optical absorptions were converted from the reflection spectra according to Kubelka-Munk equation. The specific surface areas were determined with a surface-area analyzer (BEL Sorp-II mini, BEL Japan Co., Japan) by the Brunauer–Emmett–Teller (BET) method. Photoelectron Spectroscopy (XPS) experiments were performed in type Theta probe (Thermo Fisher Co., USA) using monochromatized Al K α at h ν = 1486.6 eV and the peak positions were internally referenced to the C 1*s* peak at 284.6 eV. **Photocatalytic H₂ evolution.**

The H₂ evolution experiments were carried out in a gas-closed circulation system. The NaNbO₃

powder (0.25 g) was dispersed by using a magnetic stirrer in CH₃OH aqueous solution (220 mL of distilled water + 50 mL of CH₃OH) in Pyrex cell with a side window. The 0.5 wt% of Pt cocatalyst was photodeposited on the NaNbO₃ catalyst by adding a calculated amount of H₂PtCl₆ solution into the reaction solution. The light source was a 300 W of Xe arc lamp without filter. The H₂ evolution was measured with an on-line gas chromatograph (GC-8A, Shimadzu) with a thermal conductivity detector (TCD) according to the standard curve. After the H₂ evolution persisted for 8 h, the resulting NaNbO₃ powder was separated by centrifugation and washed with the distilled water for several times. Then the sample was dried at 70°C and continually heated at 400°C for 3 h to remove organic compounds adsorbed on the surface of catalyst. The obtained sample with 0.5 wt% Pt-loading was further used for the CO₂ reduction experiments.

CO₂ photoreduction.

The CO₂ photoreduction experiments were carried out in a gas-closed circulation system. The NaNbO₃ powder with 0.5 wt% Pt-loading (0.1 g) was dispersed on a small glass cell and then located in a Pyrex reaction cell equipped with an upside window. After that, 3 mL of distilled water was added into the gas-closed reaction system. Then, the whole system was evacuated and filled with 80 kPa of pure CO₂ gas. The light source was a 300 W of Xe arc lamp without filter. The organic products were sampled and measured with a gas chromatograph (GC-14B, Shimadzu) equipped with a flame ionization detector (FID) according to the standard curves.

Fig. S1 TG-DTA plots of the NaNbO₃-poly(citric acid)-block-poly(ethylene glycol) copolymers precursor.

For the polymerized precursor, a subsequent thermogravimetric analysis (TGA) (Fig. S1) runs in air with a flow rate of 20 mL·min⁻¹ shows a significant weight loss that occurs between 150 and 200°C from the evaporation of the remaining solvent. There is another weight loss between 200 and 360°C from the oxidation of low molecular weight poly(citric acid)-block-poly(ethylene glycol) copolymers to CO_2 . The third rapid weight loss from 360 to 400°C was attributed to the decomposition of high molecular weight poly(citric acid)-block-poly(ethylene glycol) copolymers.

SI-3 Morphology of the as-prepared samples

Fig. S2 TEM images of the NaNbO₃ samples oxidized at (a) 400°C, (c) 450°C, (d) 475°C, (e) 500°C, (f) 525°C, (g) 550°C, (h) 600°C, and HR-TEM images of the NaNbO₃ samples oxidized at (b) 400°C and (i) 600°C.

SI-4 Photocatalytic H₂ evolution performances of the as-prepared samples

Fig. S3 Photocatalytic H₂ evolution from the aqueous methanol solution over the asprepared NaNbO₃ samples with 0.5wt% Pt loading under the irradiation of 300 W Xe lamp (0.25 g catalyst, $\lambda > 300$ nm).

SI-5 The reference experiment using D_2O in photocatalytic CO_2 reduction over NaNbO₃-organic.

Fig. S4 GC-MS spectra of the products of photocatalytic CO_2 reduction over NaNbO₃-500 in the present of D_2O .

SI-6 Product evolutions over non-loaded NaNbO₃-500 in CO₂ reduction experiment.

Fig. S5 CH₄, H₂ and CO evolutions over NaNbO₃-500 without Pt-loading.

SI-7 Products besides CH₄ generated over NaNbO₃ in CO₂ reduction experiments.

Fig. S6 H_2 and CO evolutions over the as-prepared NaNbO₃ samples in CO₂ reduction experiments.

SI-8 Phase contents, surface areas and photocatalytic performances of the asprepared NaNbO₃ samples

Photocatalyst	Cubic phase content (%)	Cubic crystal size (nm)	Orthorhombic phase content (%)	Orthorhombic crystal size (nm)
NaNbO ₃ -400	98.2	8.2	1.83	48
NaNbO ₃ -450	83.9	6.8	16.1	32
NaNbO ₃ -475	68.8	8.7	31.2	36
NaNbO ₃ -500	46.8	15	53.2	59
NaNbO ₃ -525	28.7	13	71.3	65
NaNbO ₃ -550	11.1	22	88.9	80
NaNbO ₃ -600	0		100	140

Tab. S1 Calculated phase contents and crystal sizes of the as-prepared NaNbO₃ samples.

Tab. S2 Surface areas and photocatalytic performances of the as-prepared NaNbO₃ samples.

Photocatalyst	Surface area (m ² ·g ⁻	H ₂ evolution rate (μ mol ·h ⁻	CH_4 evolution rate (µmol·h ⁻
	1)	1)	1)
NaNbO ₃ -400	71.2	419	0.491
NaNbO ₃ -450	64.4	457	0.546
NaNbO ₃ -475	58.2	631	0.586
NaNbO ₃ -500	50.2	475	0.575
NaNbO ₃ -525	43.1	426	0.496
NaNbO ₃ -550	34.5	335	0.339
NaNbO ₃ -600	28.3	249	0.219