Supporting Information

Mn₃O₄ Hollow Spheres for Lithium-ion Batteries with High Rate and Capacity

Guoqiang Jian, ‡a Yunhua Xu, ‡b Li-Chung Lai, ‡ Chunsheng Wang* b and Michael R. Zachariah* ab

a Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA. E-mail: mrz@umd.edu
b Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA. E-mail: cswang@umd.edu
C NISP Laboratory, Nanocenter, University of Maryland, College Park, MD 20742, USA
‡ These authors contributed equally to this work.

S1. Enlarged image of inset SAED image shown in Figure 2a.

Figure S1. Enlarged SAED image of as collected hollow Mn₃O₄ spheres. Note: The same as inset image shown in Figure 2a.
S2. SEM image of synthesized hollow Mn$_3$O$_4$ spheres.

![SEM image of synthesized hollow Mn$_3$O$_4$ spheres.](image)

Figure S2. SEM image of synthesized hollow Mn$_3$O$_4$ spheres.

S3. N$_2$ adsorption/desorption isotherm curve and pore size distribution of hollow Mn$_3$O$_4$ spheres.

![N$_2$ adsorption/desorption isotherm curve and pore size distribution of hollow Mn$_3$O$_4$ spheres.](image)

Figure S3. (a) N$_2$ isothermal curves, and (b) NLDFT pore size distribution curve of hollow Mn$_3$O$_4$ spheres. Note: NLDFT means non-local density functional theory.
S4. TEM images of hollow Mn$_3$O$_4$ spheres after charging/discharging process.

Figure S4. (a-d) TEM images of hollow Mn$_3$O$_4$ after 140 cycles. Note: c-d are from different spheres.