Supporting Information for

Work-function tunable Polyelectrolyte Complex (PEI:PSS) as the Interfacial Layer for Inverted Organic Solar Cells

Zhenhua Lin,a Jingjing Chang,b Jie Zhang,c Changyun Jiang,*c Jishan Wu,b,c* and Chunxiang Zhu*a

Fig. S1. The pH value and conductivity of the PEI:PSS solutions as a function of the PEI:PSS ratios.
Fig. S2. Transmittance spectra of ITO, ITO/PEI and ITO/PEI:PSS films on glass substrates.
Fig. S3. AFM images of the ITO glass substrates covered with PEI (a), PEI:PSS with ratios of 1:0.1 (b), 1:0.3 (c), 1:0.5 (d), 1:0.8 (e) and 1:1 (f).
Fig. S4. $J – V$ characteristics of inverted P3HT:PC$_{61}$BM solar cells with different interface layers.

Fig. S5. $J – V$ characteristics of inverted PCDTBT:PC$_{71}$BM solar cells with TiO$_x$ (with light soaking), PEI, PEI:PSS(1:0.3) and TiO$_x$/PEI:PSS (1:0.3) interfacial layers.
Fig. S6. Batch-to-batch and device-to-device variations of the PCEs (η) of the P3HT:PC$_{60}$BM solar cells with ITO/PEI:PSS (1:0.3) cathode. For each batch, four devices (#1, #2, #3 and #4) were measured. The variations are in reasonable small range ($\leq 5\%$).