Supporting Information

Controllable Synthesis of Uniform ZnO Nanorods and their Enhanced Dielectric and Absorption Properties

Guang-Sheng Wanga,*, Ying-Ying Wua, Xiao-Juan Zhanga, Yong Lib, Lin Guoa,*, and Mao-Sheng Caob,*

a Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China.

b School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Figure S1. The SEM images of the products synthesized with different amount of hydrazine hydrate: a) 6 ml; b) 8 ml; c) 12 ml; d) 20 ml; e) 25 ml; f) 30 ml.
Figure S2. The magnified images in the corresponding pictures of Figure 2: (a) and (b) of Figure 2a; (c) and (d) of Figure 2b; (e) and (f) of Figure 2c; (g) and (h) of Figure 2d.
Figure S3. Selected magnified connected part.

Figure S4. The photograph of the ZnO/PVDF film.
Figure S5. The image of used bulk ZnO.

Figure S6. Dielectric constants (a) and Dielectric loss (b) of the pure PVDF: At 10^2 Hz, 10^3 Hz, 10^4 Hz and 10^5 Hz vs. temperature.
Figure S7. The dielectric loss tangent of NR-ZnO/PVDF composites with different loadings.

Figure S8. RL value of pure PVDF, NR-ZnO/wax and NR-ZnO/PVDF.
Figure S9. The Cole–Cole semicircle of the composites with different filler content: (a) pure PVDF; (b) 5 wt%; (c) 10 wt%; (d) 15 wt%; (e) 20 wt%.