Supporting Information for

LiFePO$_4$/reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance

Xianjun Zhu,*a Jing Hu,a Wenyuan Wu,a Wenceong Zeng,b Huaili Dai,a Yuanxin Du,b Zhen Liu,a Liang Li,a Hengxing Jib and Yanwu Zhu*b

aCollege of Chemistry, Central China Normal University, 152 Luoyu Rd, Wuhan, Hubei 430079, China. E-mail: xjzhu@mail.ccnu.edu.cn; Tel: +86-27-67867953.

bDepartment of Materials Science and Engineering and CAS Laboratory of Materials for Energy Conversion, University of Science and Technology of China, 96 Jin Zhai Rd, Hefei, Anhui 230026, China. E-mail: zhuyanwu@ustc.edu.cn; Tel: +86-551-63607670.

Supporting figures

Figure S1. The first three charge/discharge profiles of pure rGO at a current density of 0.06 C.
Figure S2. Cycle performance of pure rGO in the voltage range of 2.0~3.8 V at a current density of 0.06 C.

Figure S3. (a) Cycle performance and coulombic efficiency of LFP with 15 wt% rGO in the voltage range of 2.0~3.8 V at a current density of 0.06 C, (b) The initial charge/discharge profiles of LFP with 15 wt% rGO at a current density of 0.06 C.
Figure S4. TEM image of LFP with 15 wt% rGO after 53 cycles between 2.0 and 3.8 V in the state of charge (3.8 V).

Figure S5. TEM (a and b) images of LFP with 15 wt% rGO after C-rate testing between 2.0 and 3.8 V in the state of discharge (2.0 V).