Supporting information:

Template-directed synthesis of pyrite FeS$_2$ nanorod arrays with enhanced photoresponse

Mudan Wang1, Chengcheng Xing1, Ke Cao1, Lei Zhang3, Jiabin Liu1,* Liang Meng1*

1 Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

2 Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China

3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

METHODS

Synthesis of FeS$_2$ nanoparticle films

FeS$_2$ nanoparticle films were directly prepared on FTO substrate by sol-gel method without pre-coating ZnO seed layer. Fe(NO$_3$)$_3$·9H$_2$O was dissolved in a mixture of 2-methoxyethanol and acetyl acetone with a molar ratio 10:1. The solution was stirred at room temperature for 12 h. Then the ZnO seed layer was baked at 500 °C for 1 h. The FeS$_2$ films were obtained by annealing at 400 °C for 2 h.

* Corresponding authors. Email: Jiabin Liu (liujiabin@zju.edu.cn); Liang Meng (mengliang@zju.edu.cn). Phone: +86 57187953134. Fax: +86 57187953134.
temperature for 2 h to form homogeneous nitrate sol with a concentration of 0.6 M. The substrates were dipped into the sol solution and pulled up using a dip coater at a rate of 200 mm min\(^{-1}\), and then the coated substrates were dried at 100 °C in air for 20 min. This dipping and drying process was repeated for six cycles to obtain uniform-covered films. The finished gel films were annealed at 500 °C for 30 min to form the precursor films. The obtained precursor films and a certain amount of sublimed sulfur powder were sealed in glass ampoules. These sealed samples were annealed at 400 °C for 10 h.

Figure S1. XRD patterns of sol-gel prepared FeS\(_2\) nanoparticle films.
Figure S2. SEM images of sol-gel prepared FeS$_2$ nanoparticle films: (a) top view and (b) cross-section view.

Figure S3. XRD pattern of a pyrite FeS$_2$ nanorod thin film (immersion in Fe$^{3+}$ solution for 1h) after 1 year storage in a vacuum drier.