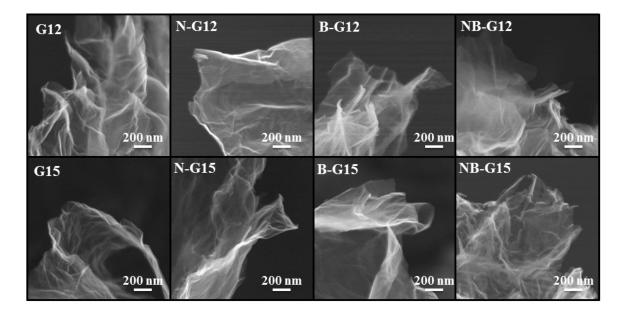
Electronic Supplementary Information of

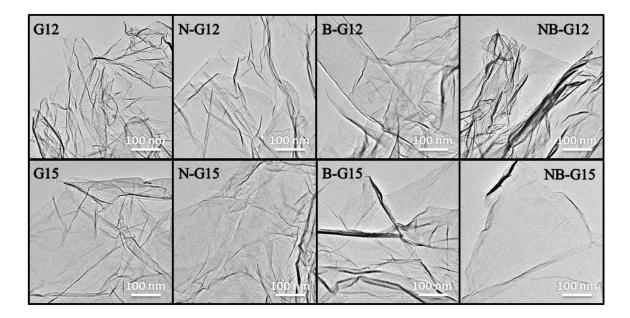
Importance of Open, Heteroatom-Decorated Edges in Chemically-Doped-G raphenes for Supercapacitor Applications

Kazunori Fujisawa¹, Rodolfo Cruz-Silva², Kap-Seung Yang³, Takuya Hayashi¹, Yoong Ahm Kim^{3,*}Morinobu Endo², Mauricio Terrones^{2, 4}, Mildred S. Dresselhaus⁵

¹Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.


²*Research Center for Exotic Nanocarbons (JST), Shinshu University, 4-17-1 Wakasato, Naga no 380-8553, Japan.*

³School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Instit ute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea.


⁴Departments of Physics and of Materials Science and Engineering and Materials Research I nstitute, The Pennsylvania State University, 104 Davey Lab, University Park, Pennsylvania 1 6802-6300, USA.

⁵Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

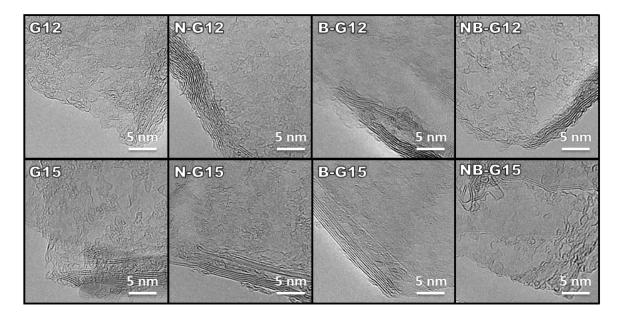

* Corresponding author: <u>yak@jnu.ac.kr</u> Tel: +82-62-530-1871

Figure S1 FE-SEM images of undoped and heteroatom-doped graphenes. All graphene samp les show a flat and sheet-like structure.

Figure S2 Low magnification HR-TEM image of un-doped and doped graphenes. Both un-d oped and doped graphenes show, bended, rippled and highly disordered structures. Note that no impurities were observed.

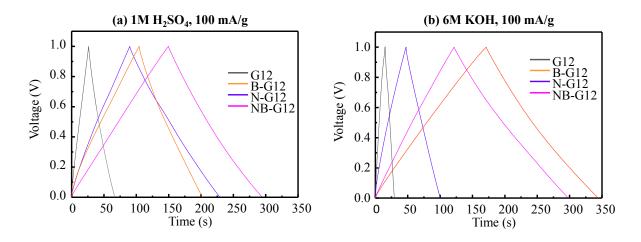
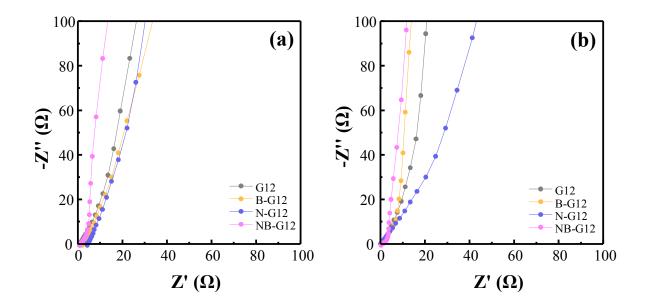


Figure S3 High magnification HR-TEM image of un-doped and doped graphenes. Graphenes are partly multi-layered and the number of layers was estimated to be around 5-9.


Table S1 R value and	I FWHM of th	e D-band for	undoped and	l doped graphen	es, evaluated
from Raman spectra.					

Sample I.D.	HTT (°C)	Dopant	<i>R</i> value $(I_D/I_G)^a$	FWHM (D-band) (cm ⁻¹)
G12	1200	-	1.38	85.8
B-G12		В	1.25	97.5
N-G12		Ν	1.22	103
NB-G12		N-B	1.03	93.0
G15	1500	-	0.99	93.7
B-G15		В	0.89	73.9
N-G15		Ν	1.11	82.6
NB-G15		N-B	1.07	72.7

^a The *R* value (I_D/I_G) is the integrated intensity of the D band divided by the integrated intensity of the G band.

Figure S4 Galvanostatic charge/discharge curves of un-doped and doped graphenes in (a) 1M H_2SO_4 and (b) 6M KOH. Note that the current density is 100mA/g.

Figure S5 Electrochemical Impedance spectroscopy results of un-doped and doped graphene in (a) 1M H₂SO₄ and (b) 6M KOH.