Supplementary Information

Binder-free Rice husk-based Silicon-Graphene Composite Paper as Energy Efficient Li-ion Battery Anodes

Deniz P. Wonga,b,c, Rangaraj Suriyaprabhad, Rathinam Yuvakumard, Venkatachalam Rajendrand, Yit-Tsong Chenc,f, Bing-Joe Hwange, Li-Chyong Chen*a and Kuei-Hsien Chen*a

a Center for Condensed Matter Sciences, and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
b Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
c Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
d Center for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode – 637 215, Tamil Nadu, India
e Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10617, Taiwan
f Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

Fax: +886-2-336652xx; Tel: +886-2-33665231; E-mail: chenc@ntu.edu.tw (L.C. Chen) or chenhk@pub.iams.sinica.edu.tw (K.H. Chen).

Index Page

\textbf{Fig. S1.} Preparation of GO suspension 2
\textbf{Fig. S2.} Cross-sectional SEM image of the Si-graphene composite paper 3
\textbf{Fig. S3.} XRD spectra of the rice husk-based Si NPs composite 4
\textbf{Fig. S4.} Raman spectra of the rice husk-based Si NPs composite 5
\textbf{Fig. S5.} EDS spectra of the rice husk-based Si NPs composite 6
S1. Preparation of GO suspension

GO was prepared using a modified Hummers and Offeman’s method. In a typical reaction, graphite (2.5 g, ITRI), sodium nitrate (NaNO₃, 2.5g, reagent grade, Aldrich) and sulfuric acid (H₂SO₄, 115 mL, Acros) were stirred together in an ice bath. Potassium permanganate (KMnO₄, 7.5g, Aldrich) was slowly added while stirring, and the rate of addition was controlled to prevent the mixture temperature from exceeding 20°C.

The mixture was then transferred to a 35°C water bath and stirred for about 0.5 hour, forming a thick paste. Subsequently, de-ionized water (115 mL) was added gradually, causing an increase in temperature to 98°C. After 15 min., the mixture was further treated with de-ionized water (350 mL) and H₂O₂ solution (30%, 25 mL). The warm solution was then filtered and washed with de-ionized water until the pH was 7 and dried at 65°C under vacuum.
Fig. S2. Cross-sectional SEM image of the Si-graphene composite paper
Fig. S3. XRD spectra of the rice husk-based Si NPs composite before (black) and after (gray) thermal reduction in Ar atmosphere
Fig. S4. Raman spectra of the rice husk-based Si NPs composite before (black) and after (gray) thermal reduction in Ar atmosphere.
Fig. S5. SEM-EDS spectra of the rice husk-based Si NPs composite (a) before and (b) after thermal reduction in Ar atmosphere.
