Supplementary Information

Nanoporous Metal Based Flexible Asymmetric Pseudocapacitors

Ying Houab+, Luyang Chenb+, Pan Liub, Jianli Kangb, Takeshi Fujitab and Mingwei Chenbcd*

a Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China

b World Premier International (WPI) Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

c CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

d State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China

+These authors contributed equally to this work.

* Corresponding author. E-mail address: mwchen@wpi-aimr.tohoku.ac.jp
Fig. S1 XPS spectrum of Mn 2p orbit for the MnO$_2$ deposited on NPG.
Fig. S2. (a) Specific capacitance of PPy-NPG//MnO$_2$-NPG asymmetric supercapacitor with 7.5 min-plated MnO$_2$ and different plating cycles PPy. (b) Relationship between specific capacitance and PPy plating cycles. (c) Specific capacitance of PPy-NPG//MnO$_2$-NPG asymmetric supercapacitor with 1 cycle-plated PPy and different plating times MnO$_2$. (d) Relationship between specific capacitance and MnO$_2$ plating times.
Fig. S3. Internal resistances of the PPy-NPG//MnO$_2$-NPG asymmetric supercapacitor, PPy-NPG//PPy-NPG symmetric supercapacitor and MnO$_2$-NPG//MnO$_2$-NPG symmetric supercapacitor at different current densities.