Supporting Information

Directional Synthesis of Tin Oxide@Graphene Nanocomposites via a One-Step Up-Scalable Wet-mechanochemical Route for Lithium ion Batteries

Sheng Li, Yazhou Wang, Chao Lai, Jingxia Qiu, Min Ling, Wayde Martens, Huijun Zhao and Shanqing Zhang*

*Centre for Clean Environment and Energy, Environmental Futures Research Institute, Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland 4222, Australia

bDiscipline of Nanotechnology and Molecular Science, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia

*To whom correspondence should be addressed.

E-mail: s.zhang@griffith.edu.au
Fig. S1 SEM images of SG-WB (a) and GO (b).
Fig S2. SEM images of SnO$_2$-WB (a), (b), SG-W (c), the back-scattered electron analysis image of SG-W (d), SG-DB (e), and SG-WB (f).
Fig S3. the 1st, 2nd and 3rd cycle charge-discharge profiles at a current density of 100 mA g-1 in the voltage range 0.01~2.5 V for SnO\textsubscript{2}-WB (a), and commercial SnO\textsubscript{2} powder (b), respectively.

Fig S4. Nyquist plots of SG-WB electrode (a), SG-DB electrode (b), and SG-W electrode (c) after 50 cycles.