Electronic Supplementary Information

Title: Preparing LiNi_{0.5}Mn_{1.5}O_{4} Nanoplates with Superior Properties in Lithium-ion Batteries Using Bimetal-Organic Coordination-Polymer as Precursors (ID: TA-ART-01-2014-000505)

5 Shifeng Yang, Jian Chen, Yingjia Liu and Baolian Yi

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Advanced rechargeable battery Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. Fax: +86-411-84379687; Tel: +86-411-84379687 E-mail: chenjian@dicp.ac.cn
Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

†Electronic Supplementary Information (ESI) available:
The crystal structures of NiMn-CPs and Ni-Mn-O were investigated by X-ray diffractometry (XRD, X’pert PRO MPD) using Cu Kα radiation (λ=0.15418 nm) with a scanning rate of 5°/min between 10° and 80°. The FT-IR spectra were collected using KBr discs on Fourier Transform Infrared spectrometer (FT-IR, VERTEX70) in the range of 4000 ~ 400 cm⁻¹.

Figure †S1. XRD pattern of Ni, Mn-ptcda coordination polymers (NiMn-CPs) obtained after hydrothermal reaction

Figure †S2. IR spectrum of ptcda (the starting material) and Ni, Mn-ptcda coordination polymers (NiMn-CPs)

Figure †S3. X-ray diffraction patterns of Ni-Mn-O obtained by thermal decomposition of NiMn-CPs