Preparation of carbon coated MoS₂ flower-like nanostructure

with self-assembled nanosheets as high-performance lithium-ion

battery anodes

Shan Hu,^{ab} Wen Chen,*a Jing Zhou,a Fei Yin,c Evan Uchaker, b Qifeng Zhang,b and

Guozhong Cao*b

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology (WUT), Wuhan, 430070, PR China. E-mail: <u>chenw@whut.edu.cn</u>; Tel.: +86-27-87651107; Fax: +86-27-87760129.

^b Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195, USA. E-mail: <u>gzcao@u.washington.edu</u>; Tel.: +1-206-616-9084.

^c Department of Mechanical Engineering Technology, Purdue University, West Lafayette, Indiana, 47906, USA.

Figure S1. TEM image of the C@MoS₂ (2:1) composites demonstrates the MoS_2 nanosheet with a carbon-coated shell.

Figure S2. TGA curve of the C@MoS₂ (2:1) composites at 5°C min⁻¹ in air.

The first weight loss below 100 °C is mostly attributed to water evaporation. So the weight was normalized at 100 °C. The weight gain from 300 °C to 400 °C is due to the oxidation of MoS_2 to MoO_3 . The other weight loss occurs at approximately 400 °C, caused by the combustion of the carbon. The weight fraction of MoS_2 in the initial sample can be easily estimated to be about 83.3% by assuming that the remaining product after TGA is pure MoO_3 at 400 °C.

Figure S3. The N_2 adsorption-desorption isotherm of the prepared C@MoS₂ (2:1). Insert: The corresponding pore size distribution.

 N_2 adsorption/desorption measurement shows that the C@MoS₂ (2:1) composites possess a Brunauer-Emmett-Teller (BET) specific surface area of ca. 31 m² g⁻¹, and pore size mainly centered at 4 nm, which is in the mesoporous range.

The average particle size of the C@MoS₂ (2:1) is estimated to be 50 nm. The density of MoS₂ is 5.06 g cm⁻³. Gas-adsorption derived surface areas (31 m² g⁻¹) are higher than the calculated surface areas (24 m² g⁻¹). The increase in surface area with increasing carbon content is attributed to the porous nature of amorphous carbon.

$$S = \pi d^{2} = 3.14 * (5 * 10^{-6})^{2} = 7.85 * 10^{-11} cm^{2}$$
$$V = \frac{\pi d^{3}}{6} = \frac{3.14 * (5 * 10^{-6})^{3}}{6} = 6.54 * 10^{-17} cm^{3}$$
$$S_{w} = \frac{S}{\rho V} = \frac{7.85 * 10^{-11}}{5.06 * 6.54 * 10^{-17}} = 23.7 m^{2} g^{-1}$$