Supporting Information

Construction and adsorption properties of Porous Aromatic Frameworks via
AlCl₃-triggered Coupling Polymerization

Lina Li, Hao Ren*, Ye Yuan, Guangli Yu and Guangshan Zhu

Synthetic procedures
Table S1 Raw material input and yield of PAFs
Fig. S1 FT-IR spectra of PAFs
Table S2 Characteristic peaks in FTIR spectra of the PAFs.
Fig. S2 Powder X-ray diffraction
Fig. S3 TEM images
Fig. S4. CO₂ and CH₄ adsorption and desorption isotherms for PAF-41
Fig. S5. CO₂ and CH₄ adsorption and desorption isotherms for PAF-42
Fig. S6. CO₂ and CH₄ adsorption and desorption isotherms for PAF-43
Fig. S7. CO₂ and CH₄ adsorption and desorption isotherms for PAF-44
Table S3 BET surface areas of PAFs synthesized at 45 °C and 60 °C
Table S4 Comparison of CO₂ uptakes and isosteric heat of adsorption in POFs
Table S5 Comparison of CH₄ uptakes and isosteric heat of adsorption in POFs
Synthetic procedures

Synthesis of PAF-41: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then triphenylamine (1.5 mmol, 367 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (364 mg, 98.6% yield).

Synthesis of PAF-42: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylmethane (1.5 mmol, 480 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.1% yield).

Synthesis of PAF-43: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylsilane (1.5 mmol, 504 mg) in 20 mL CHCl₃ was added into
the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (469 mg, 96.0% yield).

Synthesis of PAF-44: Anhydrous aluminium chloride (500 mg, 3.75 mmol) was added to a 100 mL round-bottomed flask. Then, after pumped to vacuum, the system was inflated with inert gas N₂ for 3 times. Next, dried chloroform (40 mL) was injected through a syringe and the mixture was heated to 60 °C for 3 h. Then tetraphenylgermane (1.5 mmol, 570 mg) in 20 mL CHCl₃ was added into the system and the mixture kept stirring at 60 °C for 24 h. After cooling down to room temperature, the crude product was obtained by filtration and washed with 1 M hydrochloric acid solution, methanol, and acetone to remove unreacted monomers and catalyst residues. Further purification of product was carried out by Soxhlet extraction with ethanol, THF, and CHCl₃ for 48 h. The product was dried in vacuum for 8 h at 80 °C to give PAF-42 (535.8 mg, 93.8% yield).

Table S1. Raw material input and yield of PAF-41, PAF-42, PAF-43, and PAF-44.

<table>
<thead>
<tr>
<th>PAFs</th>
<th>Monomers</th>
<th>AlCl₃</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF-41</td>
<td>367 mg, 1.5 mmol</td>
<td>375 mg, 2.81 mmol</td>
<td>96.1%</td>
</tr>
<tr>
<td>PAF-42</td>
<td>480 mg, 1.5 mmol</td>
<td>500 mg, 3.75 mmol</td>
<td>98.6%</td>
</tr>
<tr>
<td>PAF-43</td>
<td>504 mg, 1.5 mmol</td>
<td>500 mg, 3.75 mmol</td>
<td>96.0%</td>
</tr>
<tr>
<td>PAF-44</td>
<td>570 mg, 1.5 mmol</td>
<td>500 mg, 3.75 mmol</td>
<td>93.8%</td>
</tr>
</tbody>
</table>
Fig. S1. FTIR spectra of monomers (black) and corresponding polymerization products (red), PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d), respectively.
Table S2. Characteristic peaks in FIIR spectra of benzene ring

<table>
<thead>
<tr>
<th>Category</th>
<th>PAFs</th>
<th>monomers (Monosubstituted Benzene, cm$^{-1}$)</th>
<th>Product (Disubstituted Benzene, cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C stretching vibration</td>
<td>PAF-41</td>
<td>1586</td>
<td>1596</td>
</tr>
<tr>
<td></td>
<td>PAF-42</td>
<td>1594</td>
<td>1602</td>
</tr>
<tr>
<td></td>
<td>PAF-43</td>
<td>1586</td>
<td>1603</td>
</tr>
<tr>
<td></td>
<td>PAF-44</td>
<td>1582</td>
<td>1602</td>
</tr>
<tr>
<td>C-C stretching vibration</td>
<td>PAF-41</td>
<td>1491</td>
<td>1504</td>
</tr>
<tr>
<td></td>
<td>PAF-42</td>
<td>1491</td>
<td>1507 & 1483</td>
</tr>
<tr>
<td></td>
<td>PAF-43</td>
<td>1481</td>
<td>1507 & 1481</td>
</tr>
<tr>
<td></td>
<td>PAF-44</td>
<td>1483</td>
<td>1507</td>
</tr>
<tr>
<td>Ring deformation vibration</td>
<td>PAF-41</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td>710- 695 cm$^{-1}$</td>
<td>PAF-42</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td></td>
<td>PAF-43</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td></td>
<td>PAF-44</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td>C-H deformation vibration of ring hydrogens:</td>
<td>PAF-41</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td>ring CH wagging, 770-730 cm$^{-1}$</td>
<td>PAF-42</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td>5 adjacent hydrogens)</td>
<td>PAF-43</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td></td>
<td>PAF-44</td>
<td>normal</td>
<td>weakened</td>
</tr>
<tr>
<td>C-H deformation vibration of ring hydrogens:</td>
<td>PAF-41</td>
<td>normal</td>
<td>enhanced</td>
</tr>
<tr>
<td>1,4-disubstituted, CH wagging, 860- 800 cm$^{-1}$ (2 adjacent hydrogens)</td>
<td>PAF-42</td>
<td>normal</td>
<td>enhanced</td>
</tr>
<tr>
<td></td>
<td>PAF-43</td>
<td>normal</td>
<td>enhanced</td>
</tr>
<tr>
<td></td>
<td>PAF-44</td>
<td>normal</td>
<td>enhanced</td>
</tr>
</tbody>
</table>
Fig. S2. PXRD patterns of the PAFs, PAF-41 (black), PAF-42 (blue), PAF-43 (olive), and PAF-44 (red).
Fig. S3. TEM images of PAF-41 (a), PAF-42 (b), PAF-43 (c) and PAF-44 (d).
Fig. S4. CO$_2$ and CH$_4$ adsorption (solid circles) and desorption (open circles) isotherms of PAF-41.

Fig. S5. CO$_2$ and CH$_4$ adsorption (solid circles) and desorption (open circles) isotherms of PAF-42.
Fig. S6. CO₂ and CH₄ adsorption (solid circles) and desorption (open circles) isotherms of PAF-43.

Fig. S7. CO₂ and CH₄ adsorption (solid circles) and desorption (open circles) isotherms of PAF-44.
Table S3. Porosity data of PAFs synthesized at different temperature.

<table>
<thead>
<tr>
<th>Product</th>
<th>BET surface area (45 °C)</th>
<th>BET surface area (60 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF-41</td>
<td>564 m² g⁻¹</td>
<td>1119 m² g⁻¹</td>
</tr>
<tr>
<td>PAF-42</td>
<td>553 m² g⁻¹</td>
<td>640 m² g⁻¹</td>
</tr>
<tr>
<td>PAF-43</td>
<td>500 m² g⁻¹</td>
<td>515 m² g⁻¹</td>
</tr>
<tr>
<td>PAF-44</td>
<td>495 m² g⁻¹</td>
<td>532 m² g⁻¹</td>
</tr>
</tbody>
</table>
Table S4. Comparison of CO₂ uptakes and isosteric heat of adsorption in POFs

<table>
<thead>
<tr>
<th>Material</th>
<th>S$_{BET}$/m2 g$^{-1}$</th>
<th>CO₂ uptake mmol g$^{-1}$</th>
<th>T (K)</th>
<th>Q$_{stCO2}$/KJ mol$^{-1}$</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF-1</td>
<td>5600</td>
<td>2.05</td>
<td>273</td>
<td>15.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.09</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-3</td>
<td>2932</td>
<td>3.48</td>
<td>273</td>
<td>19.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.81</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-4</td>
<td>2246</td>
<td>2.41</td>
<td>273</td>
<td>16.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.16</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COF-1</td>
<td>750</td>
<td>2.32</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-5</td>
<td>1670</td>
<td>1.34</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-6</td>
<td>750</td>
<td>3.84</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-8</td>
<td>1350</td>
<td>1.43</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-10</td>
<td>1760</td>
<td>1.21</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-102</td>
<td>3620</td>
<td>1.56</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COF-103</td>
<td>3530</td>
<td>1.70</td>
<td>273</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MOP-A</td>
<td>4077</td>
<td>2.65</td>
<td>273</td>
<td>23.7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.45</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-B</td>
<td>1847</td>
<td>3.29</td>
<td>273</td>
<td>21.8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.63</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-C</td>
<td>1237</td>
<td>3.86</td>
<td>273</td>
<td>33.7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.20</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-D</td>
<td>1213</td>
<td>2.42</td>
<td>273</td>
<td>26.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.33</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-E</td>
<td>1470</td>
<td>2.95</td>
<td>273</td>
<td>25.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.77</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-F</td>
<td>653</td>
<td>1.80</td>
<td>273</td>
<td>26.7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.08</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOP-G</td>
<td>1056</td>
<td>2.15</td>
<td>273</td>
<td>26.6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP-1</td>
<td>837</td>
<td>2.05</td>
<td>273</td>
<td>26.8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.18</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP-1-(OH)$_2$</td>
<td>1043</td>
<td>1.80</td>
<td>273</td>
<td>27.6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.07</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP-1-(CH$_3$)$_2$</td>
<td>899</td>
<td>1.64</td>
<td>273</td>
<td>26.9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.94</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP-1-NH$_2$</td>
<td>710</td>
<td>1.64</td>
<td>273</td>
<td>29.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP-1-COOH</td>
<td>522</td>
<td>1.60</td>
<td>273</td>
<td>32.6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPF-1</td>
<td>1740</td>
<td>6.07</td>
<td>273</td>
<td>25.6</td>
<td>5</td>
</tr>
<tr>
<td>PPF-2</td>
<td>1470</td>
<td>5.55</td>
<td>273</td>
<td>29.2</td>
<td>5</td>
</tr>
<tr>
<td>PPF-3</td>
<td>419</td>
<td>2.09</td>
<td>273</td>
<td>21.8</td>
<td>5</td>
</tr>
<tr>
<td>Compound</td>
<td>Mass</td>
<td>MW</td>
<td>Temp</td>
<td>T1/2</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>PPF-4</td>
<td>726</td>
<td>2.59</td>
<td>273</td>
<td>25.1</td>
<td>5</td>
</tr>
<tr>
<td>BILP-2</td>
<td>708</td>
<td>3.39</td>
<td>273</td>
<td>28.6</td>
<td>6</td>
</tr>
<tr>
<td>BILP-5</td>
<td>599</td>
<td>2.91</td>
<td>273</td>
<td>28.8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-18-OH</td>
<td>1121</td>
<td>2.50</td>
<td>273</td>
<td>28.0</td>
<td>7</td>
</tr>
<tr>
<td>PAF-18-OH</td>
<td>981</td>
<td>3.27</td>
<td>273</td>
<td>29.5</td>
<td>7</td>
</tr>
<tr>
<td>PAF-41</td>
<td>1119</td>
<td>3.48</td>
<td>273</td>
<td>28.1</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-42</td>
<td>640</td>
<td>2.65</td>
<td>273</td>
<td>31.8</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-43</td>
<td>515</td>
<td>2.16</td>
<td>273</td>
<td>34.8</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAF-44</td>
<td>532</td>
<td>2.23</td>
<td>273</td>
<td>34.2</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S5. Comparison of CH\textsubscript{4} uptakes and isosteric heat of adsorption in POFs

<table>
<thead>
<tr>
<th>material</th>
<th>(S\textsubscript{BET}/m^2\textsubscript{g}^{-1})</th>
<th>CH\textsubscript{4} uptake mmol g-1</th>
<th>T (K)</th>
<th>(Q\textsubscript{stCH4}/K_Jmol^{-1})</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF-1</td>
<td>5600</td>
<td>0.80</td>
<td>273</td>
<td>14.0</td>
<td>1</td>
</tr>
<tr>
<td>PAF-3</td>
<td>2932</td>
<td>1.21</td>
<td>273</td>
<td>15.0</td>
<td>1</td>
</tr>
<tr>
<td>PAF-4</td>
<td>2246</td>
<td>0.80</td>
<td>273</td>
<td>23.0</td>
<td>1</td>
</tr>
<tr>
<td>PPF-1</td>
<td>1740</td>
<td>1.52</td>
<td>273</td>
<td>15.1</td>
<td>5</td>
</tr>
<tr>
<td>PPF-2</td>
<td>1470</td>
<td>1.44</td>
<td>273</td>
<td>15.9</td>
<td>5</td>
</tr>
<tr>
<td>PPF-3</td>
<td>419</td>
<td>0.63</td>
<td>273</td>
<td>19.4</td>
<td>5</td>
</tr>
<tr>
<td>PPF-4</td>
<td>726</td>
<td>0.83</td>
<td>273</td>
<td>13.9</td>
<td>5</td>
</tr>
<tr>
<td>BILP-2</td>
<td>708</td>
<td>0.88</td>
<td>273</td>
<td>18.4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>BILP-4</td>
<td>1135</td>
<td>1.63</td>
<td>273</td>
<td>13.0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>BILP-5</td>
<td>599</td>
<td>0.94</td>
<td>273</td>
<td>14.6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>BILP-7</td>
<td>1122</td>
<td>1.63</td>
<td>273</td>
<td>14.7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>BILP-3</td>
<td>1306</td>
<td>1.50</td>
<td>273</td>
<td>16.6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.06</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>BILP-6</td>
<td>1261</td>
<td>1.69</td>
<td>273</td>
<td>13.2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.19</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>PAF-41</td>
<td>1119</td>
<td>1.04</td>
<td>273</td>
<td>17.0</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>PAF-42</td>
<td>640</td>
<td>0.68</td>
<td>273</td>
<td>25.6</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>PAF-43</td>
<td>515</td>
<td>0.60</td>
<td>273</td>
<td>29.8</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>PAF-44</td>
<td>532</td>
<td>0.66</td>
<td>273</td>
<td>22.9</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>298</td>
<td></td>
</tr>
</tbody>
</table>

References:

