In-situ growth of monodisperse Fe₃O₄ nanoparticles on graphene as flexible paper for supercapacitor

Miaomiao Liu, Jing Sun*

The State Key Lab of High Performance Ceramics and Superfine Microstructure,
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road,
Shanghai 200050, China

E-mail address: jingsun@mail.sic.ac.cn (J. Sun)
Tel: +86-12-52414301. Fax: +86-21-52413122
Fig. S1 TEM images of Fe$_3$O$_3$.

Fig. S2 Raman spectra of GO/Fe$_3$O$_3$ and GS/Fe$_3$O$_4$ composites.
Fig. S3 Galvanostatic charge/discharge curves of (a) Trad. Fe$_3$O$_4$ (b) Trad. GS/Fe$_3$O$_4$ electrodes at different current densities.

Fig. S4 Cyclic performance of Trad. Fe$_3$O$_4$, Trad. GS/Fe$_3$O$_4$ and GS/Fe$_3$O$_4$-3 paper at 5A g$^{-1}$.