Exceptional Pseudocapacitive Properties from Hierarchical Ultrafine NiO Nanowires Grown on Mesoporous NiO Nanosheets

Lei Ana, Kaibing Xua, Wenyao Lia,b, Qian Liua, Bo Lia, Zhigang Chena, Rujia Zoua,c,* and Junqing Hua,*

a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

b School of material engineering, Shanghai university of engineering science, Shanghai 201620, China

c Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong.

E-mail: hu.junqing@dhu.edu.cn, rjzou@dhu.edu.cn.
Part I: Calculations

The specific capacitance (C) of the electrode was calculated from the discharge curves using the following formula:\(^1\):

\[
C = \frac{I \times \Delta t}{m \times \Delta V}
\]

where \(I \) (A), \(\Delta t \) (s), \(m \) (g), and \(\Delta V \) (V) are the discharge current, discharge time consumed in the potential range of \(\Delta V \), mass of the active materials, and the potential windows, respectively.

The energy density (E) and power density (P) are calculated from the discharge curves using the following formula:

\[
E = \text{Error!} \times C \times \Delta V^2
\]

\[
P = \frac{E}{\Delta t}
\]

Part II: Supplementary Figures

Fig. S1 Nitrogen adsorption-desorption isotherms of the NiO nanosheets/nanowires and mesoporous NiO nanosheets, respectively. Insets display their corresponding BJH pore size distribution plots, respectively.

Fig. S2 EDX pattern taken from the NiO nanosheets/nanowires.
Fig. S3 (a) CV curves of the mesoporous NiO nanosheets with different scan rates. (b) Galvanostatic charge-discharge curves of the mesoporous NiO nanosheets at different current densities.

Fig. S4 (a) CV curves comparison of the Ni substrate at different scan rates and NiO nanosheets/nanowires at a scan rate of 50 mV s$^{-1}$. (b) Enlarged CV curves of Ni substrate in (a) at different scan rates. (c) Galvanostatic charge-discharge (CD) curves of the Ni foam measured at 5 and 10 A g$^{-1}$, respectively.