Electronic Supplementary Information for

Advanced Se/C nanocomposite: a bifunctional electrode material for both Li-Se and Li-ion batteries

Huan Ye, Ya-Xia Yin, Shuai-Feng Zhang, and Yu-Guo Guo*

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190 (P. R. China)

*Corresponding author. E-mail: ygguo@iccas.ac.cn

Fig. S1. (a) Nitrogen adsorption/desorption isotherms at 77 K of MPCS and Se/MPCS composite and (b) their pore size distributions.
Fig. S2. (a) Thermalgravimetric analysis curve of Se/MPCS composite with a selenium content of 65 wt%, (b) TG analysis of MPCS.
Fig. S3. Elemental analysis of Se/MPCS composite after TG analysis.
Fig. S4 Galvanostatic charge/discharge voltage profiles of MPCS for the first 6 cycles tested at 0.1C.
Fig. S5. The differential discharge capacity vs voltage curve of Se/MPCS composite electrode between 1-3 V.
Fig. S6. GDC voltage profiles of the Se/MPCS electrode in the 6th cycle at different rates.
Fig. S7. *Ex situ* SEM characterization results of the lithium anode after 500 cycles.
Fig. S8. XPS Se3d spectra of Se/MPCS composite before test.
Fig. S9. GDC voltage profiles of NMC electrode in lithium cell at 0.2 C.
Fig. S10. Structural characterizations of Se/MPCS after 1000 cycles at 1 C. (a) Ex situ SEM image (b) annular bright-field TEM image of Se/MPCS, and EDX elemental mappings of (c) carbon and (d) selenium.