Electronic Supplementary Information (ESI) for

One-pot scalable synthesis of Cu-CuFe$_2$O$_4$/graphene composites as anode material of lithium-ion batteries with enhanced lithium storage properties

Yucheng Dong,a,b,* Ying-San Chui,a,b Ruguang Ma,c Chenwei Cao,b Hua Cheng,b Yang Yang Li,b Juan Antonio Zapiena,b,*

aCenter of super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong

bDepartment of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China

cSchool of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459

* E-mail: yc-d@hotmail.com, apjazs@cityu.edu.hk
Preparation of CuFe₂O₄/G composites

A certain amount of Cu-CuFe₂O₄/graphene composites was added into deionized water under sonication to form colloidal suspension, and then FeCl₃ was dissolved into the resultant suspension under mechanical stirring for several hours. The color of the solution became light green due to the presence of FeCl₂ and CuCl₂. The metallic Cu was dissolved by the following reaction:

\[
2\text{FeCl}_3 + \text{Cu} \rightarrow 2\text{FeCl}_2 + \text{CuCl}_2
\]

After washing several times by alcohol and deionized water, the residual powder was collected by centrifugation and dried in oven at 60 °C for 12 h.

![XRD pattern](image)

Fig. S1 XRD pattern of FeCl₃ treated Cu-CuFe₂O₄/G composites, all the diffraction peaks and relative intensity are consistent with those cubic phase of CuFe₂O₄ (PDF, 01-077-0010), which confirmed the nonexistence of metallic Cu in the FeCl₃ treated Cu-CuFe₂O₄/G composites and the good crystallinity of CuFe₂O₄/G composites.
Fig. S2 SEM images of pure Cu-CuFe$_2$O$_4$ crystals with different magnification.

Fig. S3 HRTEM image of metallic Cu attached to the edge of CuFe$_2$O$_4$ hexagonal platelet in the Cu-CuFe$_2$O$_4$/G composites.
Fig. S4 Cycling performance of CuFe$_2$O$_4$/G composites at a current density of 1000 mA/g. (1C=1000 mA/g)

Fig. S5 Cyclic stability of pure Cu-CuFe$_2$O$_4$ crystals at a current density of 1000 mA/g. (1C=1000 mA/g)