Supplementary Information

Porous Macromolecular Dihydropyridyl Frameworks Exhibiting Catalytic and Halochromic Activity

Bo Xiao,a,b Timothy L. Easun,a Amarajothi Dhakshinamoorthy,c,d Izabela Cebula,d,e Peter H. Beton,d Jeremy J. Titman,a Hermenegildo Garcia,c K. Mark Thomas,f and Martin Schröder*,a

a School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
b School of Chemistry & Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom.
c Instituto de Tecnología Química (CSIC-UPV), Avda. de los Naranjos s/n., 46022 Valencia, Spain.
d School of Physics and Astronomy University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
e Institute of Experimental Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw, Poland.
f Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
gCentre for Green Chemistry Processes, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, India 625 021.
(1) Spectroscopic Measurements

Figure S1. 1H-NMR (DMSO-d6) spectrum of 3,3'-benzene-1,4-diylbis(3-aminoprop-2-enenitrile).

Figure S2. FTIR spectrum of 3,3'-benzene-1,4-diylbis(3-aminoprop-2-enenitrile).
Figure S3. Solid-state UV-vis spectra of protonated and deprotonated PMF materials (black: protonated; red: deprotonated). The protonated PMFs are yellow turns red on deprotonation with OH. This protonation/deprotonation reaction is reversible.
(2) Gas Adsorption Studies

Nitrogen Adsorption

Isotherms for nitrogen adsorption and desorption at 77 K on PMF-NOTT-1 and PMF-NOTT-2 (black squares: adsorption; open squares: desorption) and DFT/Monte-Carlo pore size distributions (slit pore model; liquid N$_2$ density: 0.808 g cm$^{-3}$) are shown in Figures S4 and S5, respectively.

Figure S4. Isotherms of nitrogen adsorption and desorption on PMF-NOTT-1 and PMF-NOTT-2 at 77 K (black squares: adsorption; open squares: desorption).

Figure S5. DFT/Monte-Carlo pore size distributions (slit pore model; liquid N$_2$ density: 0.808 g cm$^{-3}$).
Dubinin-Radushkevich (D-R) Graphs for CO$_2$ adsorption

The D-R plots of CO$_2$ adsorption isotherms on PMF-NOTT-1 and PMF-NOTT-2 are given in Figure S6. It is evident that the D-R graphs overlap when plotted on a relative pressure (p/p0) basis.

a)

![Graph for PMF-NOTT-1](image1)

b)

![Graph for PMF-NOTT-2](image2)

Figure S6. Dubinin-Radushkevich graphs of CO$_2$ adsorption isotherms at 273-303 K on a) PMF-NOTT-1 and b) PMF-NOTT-2.
Virial Equation Analysis

a)

PMF-NOTT-1
CO₂ adsorption at 273K

Y = A + B*10^X

Parameter Value Error
A -15.6058 0.0226
B1 -1.1491 0.3304
B2 83830.1381 863.9238

R-Square: 0.9564
SD 0.00056

b)

PMF-NOTT-1
CO₂ adsorption at 273K

Y = A + B*10^X

Parameter Value Error
A -15.7289 0.0143
B -1170.1635 12.2140

R SD
0.9976 0.0044

c)

PMF-NOTT-1
CO₂ adsorption at 283K

Y = A + B*10^X

Parameter Value Error
A -15.6029 0.0326
B1 -1.1491 0.3304
B2 83830.1381 863.9238

R-Square: 0.9564
SD 0.00056

d)

PMF-NOTT-1
CO₂ adsorption at 283K

Y = A + B*10^X

Parameter Value Error
A -15.1327 0.0369
B -1170.1635 12.2140

R SD
0.99919 0.02905

e)

PMF-NOTT-1
CO₂ adsorption at 303K

Y = A + B*10^X

Parameter Value Error
A -17.1002 0.0362
B1 -1.2310265 15.7614
B2 123580.9114 4963.1912

R-Square: 0.9871
SD 0.03235

f)

PMF-NOTT-1
CO₂ adsorption at 303K

Y = A + B*10^X

Parameter Value Error
A -17.1321 0.0369
B -1170.1635 12.2140

R SD
0.99862 0.0278
Figure S7. Virial graphs (polynomial: $\ln(n/p) = A_0 + A_1 n + A_2 n^2$ and linear: $\ln(n/p) = A_0 + A_1 n$, for CO$_2$ adsorption isotherms of PMF-NOTT-1 and PMF-NOTT-2 at 273, 283 and 303 K.
a) PMF-NOTT-1 (273 K) (Polynomial Equation), b) PMF-NOTT-1 (273 K) (Linear Equation),
c) PMF-NOTT-1 (283 K) (Polynomial Equation), d) PMF-NOTT-1 (283 K) (Linear Equation),
e) PMF-NOTT-1 (303 K) (Polynomial Equation), f) PMF-NOTT-1 (303 K) (Linear Equation),
g) PMF-NOTT-2 (273 K) (Polynomial Equation), h) PMF-NOTT-2 (273 K), (Linear Equation)
i) PMF-NOTT-2 (283 K) (Polynomial Equation), j) PMF-NOTT-2 (283 K) (Linear Equation),
k) PMF-NOTT-2 (303 K) (Polynomial Equation), l) PMF-NOTT-2 (303 K) (Linear Equation).

The isosteric adsorption heat at zero coverage ($q^{\text{st},0}$) was calculated from the gradient of plotting A_0 against $1/T$ i.e. $\partial A_0 / \partial (1/T) = q^{\text{st},0} / R$ ($R = 8.314$ J K$^{-1}$ mol$^{-1}$).

Figure S8. Variation of virial parameter A_0 with $1/T$ for a) PMF-NOTT-1 and b) PMF-NOTT-2. The isosteric heat ($q^{\text{st},0}$) of adsorption at zero surface coverage was calculated from the gradient of the straight line. The polynomial fitting of $\ln(n/p) \sim n$ gives values for PMF-NOTT-1 of 33.09 ± 3.26 kJ mol$^{-1}$ and for PMF-NOTT-2 of 31.86 ± 1.35 kJ mol$^{-1}$; as a comparison, linear fitting gives PMF-NOTT-1: 33.74 ± 2.44 kJ mol$^{-1}$, PMF-NOTT-2: 30.45 ± 0.51 kJ mol$^{-1}$.
Figure S9. Variation of isosteric heat of adsorption \((q^{st}) \) with amount of CO\(_2\) adsorbed a) PMF-NOTT-1 and b) PMF-NOTT-2.
Figure S10. Adsorption isotherms for H₂ in a) PMF-NOTT-1 and b) PMF-NOTT-2 at 77 and 87 K (closed symbols: adsorption; open symbols: desorption).

Figure S11. Virial graphs for equation \(\ln (n/P) = A_0 + A_1 n \) for H₂ adsorption for a) PMF-NOTT-1 (77 K) b) PMF-NOTT-1 (87 K), c) PMF-NOTT-2 (77 K), d) PMF-NOTT-2 (87 K)
The isosteric heat of adsorption at zero coverage \((q_{st,0})\) was calculated from the gradient of the graph of \(A_0\) against \(1/T\) i.e. \(\frac{\partial A_0}{\partial (1/T)} = \frac{q_{st,0}}{R}\) \((R = 8.314 \text{ JK}^{-1}\text{mol}^{-1})\) (for PMF-NOTT-1: \(q_{st,0} = 9.46 \text{ kJ mol}^{-1}\); for PMF-NOTT-2: \(q_{st,0} = 8.85 \text{ kJ mol}^{-1}\)).

(3) Catalysis Studies

Table S1. Data for different runs of the Knoevenagel condensation between aldehydes and malonitriles using PMF-NOTT-1 and PMF-NOTT-2 catalysts. a

<table>
<thead>
<tr>
<th>Run</th>
<th>Entry</th>
<th>Aldehyde</th>
<th>Catalyst</th>
<th>Time (h)</th>
<th>Conversion (%)b</th>
<th>Selectivity (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7a</td>
<td>Benzaldehyde</td>
<td>PMF-NOTT-1</td>
<td>54</td>
<td>68</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>7a</td>
<td>Benzaldehyde</td>
<td>PMF-NOTT-1c</td>
<td>54</td>
<td>66</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>7a</td>
<td>Benzaldehyde</td>
<td>PMF-NOTT-1d</td>
<td>54</td>
<td>63</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>7a</td>
<td>Benzaldehyde</td>
<td>PMF-NOTT-2</td>
<td>54</td>
<td>36</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>7b</td>
<td>4-chlorobenzaldehyde</td>
<td>PMF-NOTT-1</td>
<td>52</td>
<td>64</td>
<td>97e</td>
</tr>
<tr>
<td>6</td>
<td>7c</td>
<td>4-cyanobenzaldehyde</td>
<td>PMF-NOTT-1</td>
<td>52</td>
<td>54</td>
<td>98e</td>
</tr>
<tr>
<td>7</td>
<td>7d</td>
<td>4-methylbenzaldehyde</td>
<td>PMF-NOTT-1</td>
<td>52</td>
<td>93</td>
<td>97e</td>
</tr>
</tbody>
</table>

a Reaction conditions: aldehyde (1 mmol), malonitrile (1 mmol), toluene (4 mL), catalyst (20 mg), 110 °C. b Determined by GC. c First reuse; d Second reuse; e 2 % of corresponding acid was observed.

(4) Scanning Electron Micrographs

![Scanning Electron Micrographs](image)

Figure S12. SEM images show the spherical morphology of PMF-NOTT-1 and PMF-NOTT-2.