Supporting Information

Surface treatment with Al\(^{3+}\) on Ti-doped \(\alpha\)-Fe\(_2\)O\(_3\) nanorod arrays photoanode for efficient photoelectrochemical water splitting

Zewen Fu\(^a\), Tengfei Jiang\(^a\), Lijing Zhang\(^a\), Bingkun Liu\(^a\), Dejun Wang\(^{a,c}\), Lingling Wang\(^{*,b}\) and Tengfeng Xie\(^{*,a}\).

\(^a\) State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China.

\(^b\) State Key Laboratory of Supramolecular structure and materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China.

\(^c\) Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China.

*Corresponding author. Tel.: +86 431 85168093. E-mail: xietf@jlu.edu.cn and ltlwll98003082@aliyan.com.

Fig. S1 XPS survey spectra of Fe\(_2\)O\(_3\)-Al and Ti-Fe\(_2\)O\(_3\)-Al.
The onset potential of dark current can provide information as to electrocatalytic activity of water oxidation on the Fe$\textsubscript{2}$O$\textsubscript{3}$ electrode.1 Compared with Fe$\textsubscript{2}$O$\textsubscript{3}$ and Ti-Fe$\textsubscript{2}$O$\textsubscript{3}$, the dark onset potential of Fe$\textsubscript{2}$O$\textsubscript{3}$-Al and Ti-Fe$\textsubscript{2}$O$\textsubscript{3}$-Al shows an anodic shift. In general, a lower dark current onset potential indicates higher electrocatalytic activity for water oxidation.2 This indicates that the surface treatment with Al$^{3+}$ makes the electrode less catalytic for O$_2$ evolution.

The donor concentration (N_d) and flat band potential (V_{fb}) can be quantified by the Mott-Schottky equation.3

$$\frac{1}{C^2} = \frac{2}{en_e\varepsilon_N} \left(\frac{V}{V_{fb}} - kT/e \right)$$

Where the C is the capacitance of the space charge region, ε_0 is the vacuum permittivity, ε is the dielectric constant of α-Fe$_2$O$_3$, e is the electron charge, V is the electrode applied potential, k is the Boltzmann constant, T is the absolute temperature, and N_d is the donor concentration. In general, the impact of temperature term is small and can be neglected. All samples show a positive slope in the Mott-Schottky plots, indicating that they are n-type semiconductors. The donor concentration is calculated with the equation.4, 5

$$N_d = \left(\frac{2}{ne\varepsilon_0} \right) \left[\frac{d(1/C^2)}{dV} \right]^{-1}$$

With the ε value of 80 for α-Fe$_2$O$_3$, the N_d of Fe$_2$O$_3$ and Fe$_2$O$_3$-Al were calculated to be 2.1×10^{18} cm$^{-3}$. The N_d of Ti-Fe$_2$O$_3$ and Ti-Fe$_2$O$_3$-Al were calculated to be 1.7×10^{20} cm$^{-3}$.

Fig. S2 Dark current for water oxidation (a) and Mott-Schottky plots (b) of Fe$_2$O$_3$, Fe$_2$O$_3$-Al, Ti-Fe$_2$O$_3$ and Ti-Fe$_2$O$_3$-Al.
As shown in the Fig. S3, the dark current of Ti-Fe$_2$O$_3$ and Ti-Fe$_2$O$_3$-Al are negligible with N$_2$ bubbling. When O$_2$ was bubbling into the solution, an obvious reduction current was observed for Ti-Fe$_2$O$_3$ and Ti-Fe$_2$O$_3$-Al. The reduction current represents the electrons of Fe$_2$O$_3$ reduce O$_2$. Compared with Ti-Fe$_2$O$_3$, the Ti-Fe$_2$O$_3$-Al has a higher reduction current when O$_2$ was bubbling into solution. The same result can be seen on Fe$_2$O$_3$ and Fe$_2$O$_3$-Al. When O$_2$ was bubbling into the solution, Fe$_2$O$_3$-Al has a higher reduction current than Fe$_2$O$_3$. The results suggest that O$_2$ is reduced more easily on Fe$_2$O$_3$-Al and Ti-Fe$_2$O$_3$-Al compared with Fe$_2$O$_3$ and Ti-Fe$_2$O$_3$.

References