Supplementary information for

High flux high-silica SSZ-13 membrane for CO$_2$ separation

Nikolay Kosinova, Clement Auffreta, Canan Gücüyenerb, Bartłomiej M. Szyjac, Jorge Gasconb, Freek Kapteijnb and Emiel J.M. Hensena*

a Schuit Institute of Catalysis, Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: e.j.m.hensen@tue.nl, tel: +31-40-2475178

c Institute for Solid State Theory, University of Münster, Wilhelm-Klemm Str. 10, 48149 Münster, Germany.

* Corresponding author

Table of contents

SEM images of applied support and seed layer 2
Scheme of experimental setup and permeation calculations 3
TG analysis of as-synthesized and detemplated SSZ-13 powders 5
SEM image of SSZ-13 films detemplated at 500 °C 6
CO$_2$/CH$_4$ separation in pressure gradient mode 7
CO$_2$/N$_2$ separation in pressure gradient mode 8
Influence of total flow rate on CO$_2$/CH$_4$ separation 9
CO$_2$, N$_2$, CH$_4$ adsorption isotherms on SSZ-13 powder 10
Description of adsorption simulations 12
Water adsorption on SSZ-13 with varied Si/Al ratio 13
Analysis of defect contribution to gas permeances 14
Fig. S1 SEM images of the macroporous α-alumina support surface (left) and layer of SSZ-13 seed crystals after two dip-coating steps (right).
Fig. S2 Scheme of separation setup and membrane module.

1. Gas bottles
2. Mass-flow controllers
3. Stainless steel saturator
4. 4-way valves
5. Oven
6. Membrane module
7. Back-pressure regulator
8. Flow meter (digital or bubble)
9. Online GC

Calculation of permeance

Due to use of hollow fiber membranes the composition of the feed flow may change along the membrane length. To account for that we used log-mean pressure difference calculated as follows:
\[(\Delta p_i)_n = \frac{(p_{feed}^i - p_{perm}^i) - (p_{ret}^i - p_{perm}^i)}{\ln\left(\frac{p_{feed}^i - p_{perm}^i}{p_{ret}^i - p_{perm}^i}\right)}\]

Retentate, permeate and feed flows and compositions were measured for every experiment and the values were applied for the above calculation.

The back-permeation of sweep gas was neglected in this work. It may, however, significantly influence the membrane performance, especially at lower pressures [J.M. van der Graaf, et al. J. Membr. Sci., 1998, 144, 87-104 and J. van der Bergh et al., J. Membr. Sci., 2008, 16, 35]. Hence, we are currently investigating this effect, to be published in a follow-up publication [C. Gücüyener et al., Modeling permeation of binary gas mixtures across an SSZ-13 zeolite membrane, in preparation]
Fig. S3 TGA curves of SSZ-13 powder (Si/Al=100) calcined in air at 700°C for 5 h (red); calcined in oxygen at 450°C for 80 h (green) and as-synthesized (blue). Heating rate 5 K/min, air flow 40 ml/min.

Table S1 Weight loss of different SSZ-13 samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Weight loss (400°C-750°C), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcined at 700°C</td>
<td>0.6</td>
</tr>
<tr>
<td>Calcined at 450°C</td>
<td>2.3</td>
</tr>
<tr>
<td>As-synthesized</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Detemplation extent: 92.3%
Fig. S4 SEM image of a crack formed on the membrane surface after calcination at 550°C in artificial air flow.
Fig. S5 CO₂/CH₄ equimolar mixture separation in a pressure gradient mode with no sweep gas (dashed lines - single component permeance and ideal selectivity, solid lines - mixture separation results; conditions: 0.6 MPa feed pressure, atmospheric pressure at permeate side, total feed flow rate 200 ml/min.).
Fig. S6 CO$_2$/N$_2$ equimolar mixture separation in a pressure gradient mode without sweep gas (dashed lines - single component permeance and ideal selectivity, solid lines - mixture separation results; conditions: 0.6 MPa feed pressure, atmospheric pressure on permeate side, total flow rate 200 ml/min)

In the pressure mode at 6 bar total feed pressure without using a sweep gas results were very similar to those obtained in the sweep-gas mode for both mixtures separations. The flux at lower pressures and especially in the presence of water was not high enough to provide reliable GC analysis. Thus, sweep-gas mode was chosen as the standard in this work.

The temperature dependencies presented in Figures S5 and S6 reveal the following trends. For the single component permeation the CO$_2$ permeance decreases with temperature, as a result of the decreasing concentration in the membrane. For CH$_4$ the permeance is nearly constant, which may be caused by the combined influence of activated diffusion and permeation through defects. The nitrogen permeance passes through a maximum which can be the result of a slightly activated diffusion process and a decreasing concentration in the membrane, similarly as for MFI and DDR membranes. [F. Kapteijn et al., *AIChE J.*, 2000, **46**, 1096 and J. van der Bergh et al., *J. Membr. Sci.*, 2008, **16**, 35]

For both mixtures the selectivity monotonically decreases and evolves to that of the ideal selectivity at higher temperatures. For CO$_2$/CH$_4$ the mixture selectivity is lower, due to an increased permeance of methane, suggesting an interaction with the faster permeating carbon dioxide. For the CO$_2$/N$_2$ selectivity this ‘entrainment’ of N$_2$ seems even stronger at lower temperatures, resulting in an appreciable lower selectivity at low temperatures, passing through a weak maximum as a function of temperature.

The preparation of SSZ-13 membranes on the supports with higher permeation area can ensure permeation flows high enough to perform the separation in the pressure gradient mode at lower pressures [Canan Gücüyener et al., *Modeling permeation of binary gas mixtures across an SSZ-13 zeolite membrane*, in preparation].
Fig. S7 Influence of total flow rate on SSZ-13 membrane separation of an equimolar CO$_2$/CH$_4$ mixture (conditions: 293 K, 0.6 MPa feed pressure, atmospheric pressure on permeate side, 200 ml/min of sweep gas).

To avoid influence of a concentration-polarization effect the flow rate of 200 ml/min was chosen as the standard for the permeation and separation tests.
Fig. S8 CO₂, CH₄ and N₂ adsorption isotherms of SSZ-13 powder (Si/Al=80).
Estimated dual site Langmuir adsorption parameters of CO$_2$, CH$_4$ and N$_2$ for SSZ-13 (Si/Al =80); including their 95% confidence intervals.

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th># of sites</th>
<th>$q_{\text{mol,A}}$ mol kg$^{-1}$</th>
<th>$-\Delta H_A$ kJ mol$^{-1}$</th>
<th>$K_{0,A}$ 10^{-7} kPa$^{-1}$</th>
<th>$q_{\text{mol,B}}$ mol kg$^{-1}$</th>
<th>$-\Delta H_B$ kJ mol$^{-1}$</th>
<th>$K_{0,B}$ 10^{-7} kPa$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>2</td>
<td>3.78±0.75</td>
<td>32.0±1.70</td>
<td>0.03±0.03</td>
<td>4.32±0.75</td>
<td>24.8±0.72</td>
<td>6.73±2.97</td>
</tr>
<tr>
<td>N$_2$</td>
<td>2</td>
<td>1.46±0.26</td>
<td>19.3±1.49</td>
<td>2.99±2.07</td>
<td>7.50±0.26</td>
<td>10.6±0.19</td>
<td>23.4±5.52</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>2</td>
<td>3.05±0.16</td>
<td>19.7±0.59</td>
<td>0.43±0.22</td>
<td>2.66±0.14</td>
<td>17.9±0.11</td>
<td>20.5±1.02</td>
</tr>
</tbody>
</table>

Following cooling baths were employed to achieve the desired temperatures for adsorption:

- Adsorption at 195 K – Isopropanol/Ice
- Adsorption at 221 K – Ethylene glycol / Ethanol / Solid CO$_2$
- Adsorption at 234 K – Ethylene glycol / Ethanol / Solid CO$_2$
- Adsorption at 255 K – Kryo 20
- Adsorption at 273 K – Ice
- Adsorption at 298 K – Water
- Adsorption at 323 K – Heating

In addition, Ar physisorption tests at 87 K were performed on an SSZ-13 sample with an Si/Al ratio of 86 to evaluate its textural properties. BET surface of the sample is 632 m2.g$^{-1}$ and microporous volume calculated by t-plot model is 0.25 cm3.g$^{-1}$.
Computational details

In addition to description given in the main text, the interactions between the various molecules are described in a pair-wise fashion using the following parameters:

<table>
<thead>
<tr>
<th>Center i</th>
<th>Center j</th>
<th>R0 [Å]</th>
<th>D0 [kcal/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4</td>
<td>O_z</td>
<td>3.895</td>
<td>0.2285</td>
</tr>
<tr>
<td>CH4</td>
<td>CH4</td>
<td>4.176</td>
<td>0.3150</td>
</tr>
<tr>
<td>CH4</td>
<td>C_CO2</td>
<td>3.637</td>
<td>0.1327</td>
</tr>
<tr>
<td>CH4</td>
<td>O_CO2</td>
<td>3.794</td>
<td>0.2245</td>
</tr>
<tr>
<td>CH4</td>
<td>N</td>
<td>3.951</td>
<td>0.1509</td>
</tr>
<tr>
<td>C_CO2</td>
<td>O_z</td>
<td>3.122</td>
<td>0.0998</td>
</tr>
<tr>
<td>C_CO2</td>
<td>C_CO2</td>
<td>3.098</td>
<td>0.0559</td>
</tr>
<tr>
<td>C_CO2</td>
<td>O_CO2</td>
<td>3.244</td>
<td>0.0946</td>
</tr>
<tr>
<td>C_CO2</td>
<td>N</td>
<td>3.412</td>
<td>0.0636</td>
</tr>
<tr>
<td>O_CO2</td>
<td>O_z</td>
<td>3.277</td>
<td>0.1688</td>
</tr>
<tr>
<td>O_CO2</td>
<td>O_CO2</td>
<td>3.404</td>
<td>0.1600</td>
</tr>
<tr>
<td>O_CO2</td>
<td>N</td>
<td>3.569</td>
<td>0.1076</td>
</tr>
<tr>
<td>N</td>
<td>O_z</td>
<td>3.437</td>
<td>0.1158</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>3.727</td>
<td>0.0723</td>
</tr>
</tbody>
</table>
Fig. S9 Water adsorption isotherms of SSZ-13 samples of different synthesis Si/Al ratios at 298 K, measured by gravimetry.

A detailed description of the adsorption procedure can be found in [N. Kosinov et al. Microporous Mesoporous Mater. (2014) in press, doi: http://dx.doi.org/10.1016/j.micromeso.2014.03.034]
SF₆ is assumed to permeate exclusively through defects by Knudsen diffusion, and therefore the contribution of the defect permeance for other gases is calculated as:

\[\Pi^i = \Pi^{SF_6} \cdot \sqrt{\frac{Mr(SF_6)}{Mr(i)}} \]

where \(\Pi^i \) – permeance of gas \(i \), \(Mr(i) \) – molecular mass of gas \(i \).