Electronic Supplementary Information for

Polyaniline Nanofiber/Vanadium Pentoxide Sprayed
Layer-by-Layer Electrodes for Energy Storage

Lin Shao,¹ Ju-Won Jeon² and Jodie L. Lutkenhaus²*

1. Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut. 06511
2. Department of Chemical Engineering, Texas A&M University, College Station, Texas. 77843

1. Figure S1. Effect of blow-drying time
2. Figure S2. Effect of PANI NF concentration
3. Figure S3. Optimized electrodes
4. Figure S4. UV-Vis spectra
5. Figure S5. Galvanostatic cycling data based on volume
6. Figure S6. Ragone plot of (PANI NF/V2O5)30 spray-assisted LbL electrodes and (PANI NF/V2O5)16 dip-assisted LbL electrodes, which is based on volume
7. Table S1. Parameters used for fitting of the equivalent-circuit model to the data

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014
Figure S1. Sample A was prepared with a blow-drying time of 30 sec; Sample B was prepared with a blow-drying time of 1 min. Both samples have 50 layer pairs.

Figure S2. Images of PANI NF/V$_2$O$_5$ LbL electrodes prepared by spray process with different PANI NF concentrations. The numbers on top of the images are the number of layer pairs.
Figure S3. Image of PANI NF/V$_2$O$_5$ LbL electrodes after optimization of parameter settings.

Figure S4. (a) UV-Vis spectra of (PANI NF/V$_2$O$_5$)$_{30}$ LbL films at 2.0 V (black curve) and at 3.5 V vs Li/Li$^+$ (red curve).
Figure S5. Galvanostatic cycling data based on volume.

Figure S6. Ragone plot of (PANI NF/V$_2$O$_5$)$_{30}$ spray-assisted LbL electrodes and (PANI NF/V$_2$O$_5$)$_{16}$ dip-assisted LbL electrodes, which is based on volume.
Table S1. Parameters used for fitting of the equivalent-circuit model to the data

<table>
<thead>
<tr>
<th></th>
<th>3.5V</th>
<th>2.75V</th>
<th>2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₀CPE₂</td>
<td>8.57e-6</td>
<td>6.147e-6</td>
<td>3.383e-6</td>
</tr>
<tr>
<td>aₐCPE₂</td>
<td>0.8345</td>
<td>0.8497</td>
<td>0.84</td>
</tr>
<tr>
<td>R₂/Ω</td>
<td>228.2</td>
<td>285</td>
<td>350.3</td>
</tr>
<tr>
<td>Y₀W</td>
<td>134.1e-3</td>
<td>356.6e-6</td>
<td>200.0e-6</td>
</tr>
<tr>
<td>BₐW</td>
<td>0.3841</td>
<td>0.9514</td>
<td>0.06651</td>
</tr>
<tr>
<td>Y₀CPE₁</td>
<td>214.2e-12</td>
<td>222.3e-12</td>
<td>214.1e-12</td>
</tr>
<tr>
<td>aₐCPE₁</td>
<td>0.958</td>
<td>0.9566</td>
<td>0.9586</td>
</tr>
<tr>
<td>R₁/Ω</td>
<td>956.9</td>
<td>957.1</td>
<td>959.7</td>
</tr>
<tr>
<td>YₐCPE₃</td>
<td>0.02343</td>
<td>0.02653</td>
<td>0.05103</td>
</tr>
<tr>
<td>aₐCPE₃</td>
<td>0.9335</td>
<td>0.9434</td>
<td>0.8979</td>
</tr>
</tbody>
</table>

The impedance of a CPE has the form:

\[Z = \frac{(1/Y₀)}{(j\omega)^α} \]

When this equation describes a capacitor, the constant \(Y₀ = C \) (the capacitance) and the exponent \(α = 1 \). For a constant phase element, the exponent \(α \) is less than one.

The equation for the Warburg impedance can be written as:

\[Z = \frac{(1/Y₀)}{\sqrt{j\omega}} \]

where

\[Y₀ = 1/(\sqrt{2} \cdot σ) \]

If the diffusion layer is bounded, the impedance at lower frequencies no longer obeys the equation above. Instead, we get the form:
\[Z = \left[\frac{1}{Y_0} / \sqrt{(j\omega)} \right] \tanh [B \sqrt{j\omega}] \]

with

\[B = \frac{\delta}{D^{1/2}} \]

\(d = \) Nernst diffusion layer thickness (cm)
\(D = \) an average value of the diffusion coefficients of the diffusing species (cm\(^2\)/s)