SUPPORTING INFORMATION for

A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis

Ludovic Jourdin*a,b, Stefano Freguia*a,b, Bogdan C. Donose*a,b, Jun Chen*c, Gordon G. Wallace*c, Jurg Keller*a, and Victoria Flexer*a,‡

*a The University of Queensland, Advanced Water Management Centre, Level 4, Gehrmann Building (60), Brisbane, QLD 4072, Australia

b Centre for Microbial Electrosynthesis, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia.

ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW, 2522, Australia

‡ Present address: Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, Ghent 9000 BELGIUM

*Dr Victoria Flexer: victoria.flexer@ugent.be

*Ludovic Jourdin: l.jourdin@awmc.uq.edu.au
Figure S1: Schematic illustration of a microbial electrosynthesis cell – carbon dioxide microbial reduction to acetate.

Figure S2: Cyclic voltammogram of ferricyanide on NanoWeb-RVC and non-modified RVC. Experiments performed in a standard three-electrode cell with a 0.1M NaNO₃ solution containing 10mM ferricyanide at a scan rate of 5 mV s⁻¹.