Supplementary Information

Deposition of Pd/graphene aerogel on nickel foam as a binder free electrode for direct electrooxidation of methanol and ethanol

Chi-Him A. Tsang, K.N. Hui, K.S. Hui and L. Ren

a Department of System Engineering and Engineering Management, City University of Hong Kong, Hong Kong
b School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
c Department of Mechanical Convergence Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea.
d Faculty of Materials and Optoelectronic physics, Xiangtan University, Hunan 411105, P. R. China

*Corresponding author

Email addresses: bizhui@pusan.ac.kr (K.N. Hui)
Tel: + 82 5-1510-2467; Fax: + 82 5-1514-4457

E-mail: kshui@hanyang.ac.kr (K.S. Hui)
Tel: +82 2-2220-0441; Fax: +82 2-2220-2299
Figure captions

Fig S1. Digital image of (a) front, and (b) back of the 7.65 wt.% Pd/GA/NF, and optical microscope image of the 7.65 wt.% Pd/GA/NF and the NF, (c-d) low magnification (scale bar: 1000 μm), and (e-f) high magnification (scale bar: 400 μm).

Fig S2. (a-c) TEM images of 0.8 wt.% Pd/GA/NF in 3 random areas (scale bar: (a) and (b): 100 nm, (c): 200 nm), and (d) size distributions of Pd NPs.

Fig S3. (a-c) TEM images of 2.17 wt.% Pd/GA/NF in 3 random areas (scale bar: (a) and (b): 200 nm, (c): 0.5 μm), and (d) size distributions of Pd NPs.

Fig S4. (a-c) TEM images of 7.65 wt.% Pd/GA/NF in 3 random areas (scale bar: 200 nm), and (d) size distributions of Pd NPs.

Fig S5. CV of 2.17 wt.% Pd/GA/NF in 1 M EtOH/1 M KOH (-0.845 to +0.955 V).

Fig S6. The 25th cycle of CV in 1 M MeOH/1 M KOH (-0.245 to +0.955 V) of (a) NF, GA/NF and 7.65 wt.% Pd/GA/NF, and (b) NF; the 25th cycle of CV in 1 M EtOH/1 M KOH (-0.845 to +0.955 V) of (c) NF, GA/NF and 7.65 wt.% Pd/GA/NF, and (d) NF.

Fig S7. CV of 7.65 wt.% Pd/GA/NF in 1 M KOH solution at the 11th cycle (scan rate: 0.05 V s⁻¹).
Table captions

Table S1. Variation of anodic scan J_f, I_f/I_b and onset potential of 7.65 wt.% Pd/GA/NF in methanol oxidation.

Table S2. Variation of anodic scan J_f, I_f/I_b and onset potential of 7.65 wt.% Pd/GA/NF in ethanol oxidation.

Table S3. Comparison of the best values of current density in the anodic scan (J_f) and I_f/I_b ratio of some Pd based electrocatalyst for methanol and ethanol oxidation.
Fig. S1. Digital image of (a) front, and (b) back of the 7.65 wt.% Pd/GA/NF, and optical microscope image of the 7.65 wt.% Pd/GA/NF and the NF, (c-d) low magnification (scale bar: 1000 μm), and (e-f) high magnification (scale bar: 400 μm).
Fig. S2. (a-c) TEM images of 0.8 wt.% Pd/GA/NF in 3 random areas (scale bar: (a) and (b): 100 nm, (c): 200 nm), and (d) size distributions of Pd NPs.
Fig. S3. (a-c) TEM images of 2.17 wt.% Pd/GA/NF in 3 random areas (scale bar: (a) and (b): 200 nm, (c): 0.5 μm), and (d) size distributions of Pd NPs.
Fig. S4. (a-c) TEM images of 7.65 wt.% Pd/GA/NF in 3 random areas (scale bar: 200 nm), and (d) size distributions of Pd NPs.
Fig. S5. CV of 2.17 wt.% Pd/GA/NF in 1 M EtOH/1 M KOH (-0.845 to +0.955 V).
Fig. S6. The 25th cycle of CV in 1 M MeOH/1 M KOH (-0.245 to +0.955 V) of (a) NF, GA/NF and 7.65 wt.% Pd/GA/NF, and (b) NF; the 25th cycle of CV in 1 M EtOH/1 M KOH (-0.845 to +0.955 V) of (c) NF, GA/NF and 7.65 wt.% Pd/GA/NF, and (d) NF.
CV behavior of 7.65 wt.% Pd/GA/NF in 1 M KOH

In-depth analysis of electrocatalytic performance of 7.65 wt.% Pd/GA/NF was performed. Fig. S7 shows the CV curve of 7.65 wt.% Pd/GA/NF in 1 M KOH solution at the 11th cycle at 25 °C. The result indicated an obvious cathodic peak at -0.43 V in the reverse scan, which was due to oxygen desorption from the Pd NPs in alkaline solution.¹

![CV curve of 7.65 wt.% Pd/GA/NF in 1 M KOH solution](image)

Fig. S7. C CV of 7.65 wt.% Pd/GA/NF in 1 M KOH solution at the 11th cycle (scan rate: 0.05 V s⁻¹).
Table S1 Variation of anodic scan J_f, I_f/I_b and onset potential of 7.65 wt.% Pd/GA/NF in methanol oxidation.

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>J_f (A g$^{-1}$) (MeOH)</th>
<th>I_f/I_b (MeOH)</th>
<th>Variation rate of J_f (MeOH)</th>
<th>Onset potential (V) (MeOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>593.3</td>
<td>4.15</td>
<td>0.74</td>
<td>-0.476</td>
</tr>
<tr>
<td>5</td>
<td>715.2</td>
<td>3.46</td>
<td>0.90</td>
<td>-0.476</td>
</tr>
<tr>
<td>6</td>
<td>733.2</td>
<td>2.86</td>
<td>0.92</td>
<td>-0.476</td>
</tr>
<tr>
<td>9</td>
<td>755.8</td>
<td>3.51</td>
<td>0.95</td>
<td>-0.496</td>
</tr>
<tr>
<td>14</td>
<td>798.8</td>
<td>3.11</td>
<td>1</td>
<td>-0.496</td>
</tr>
<tr>
<td>25</td>
<td>787.97</td>
<td>3.03</td>
<td>0.99</td>
<td>-0.496</td>
</tr>
<tr>
<td>29</td>
<td>788</td>
<td>3.05</td>
<td>0.99</td>
<td>-0.536</td>
</tr>
<tr>
<td>54</td>
<td>729.9</td>
<td>2.96</td>
<td>0.91</td>
<td>-0.516</td>
</tr>
<tr>
<td>104</td>
<td>670.2</td>
<td>3.03</td>
<td>0.84</td>
<td>-0.516</td>
</tr>
<tr>
<td>254</td>
<td>590</td>
<td>2.70</td>
<td>0.74</td>
<td>-0.516</td>
</tr>
<tr>
<td>504</td>
<td>492.4</td>
<td>2.09</td>
<td>0.62</td>
<td>-0.516</td>
</tr>
<tr>
<td>1004</td>
<td>316</td>
<td>1.61</td>
<td>0.40</td>
<td>-0.496</td>
</tr>
</tbody>
</table>
Table S2 Variation of anodic scan J_f, I_f/I_b and onset potential of 7.65 wt.% Pd/GA/NF in ethanol oxidation.

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>J_f (A g$^{-1}$ (EtOH))</th>
<th>I_f/I_b (EtOH)</th>
<th>Variation rate of J_f (EtOH)</th>
<th>Onset potential (V) (EtOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.5</td>
<td>0.52</td>
<td>0.07</td>
<td>-0.436</td>
</tr>
<tr>
<td>5</td>
<td>288.3</td>
<td>1.35</td>
<td>0.33</td>
<td>-0.536</td>
</tr>
<tr>
<td>25</td>
<td>744.3</td>
<td>2.17</td>
<td>0.85</td>
<td>-0.596</td>
</tr>
<tr>
<td>31</td>
<td>786</td>
<td>2.22</td>
<td>0.90</td>
<td>-0.616</td>
</tr>
<tr>
<td>32</td>
<td>792</td>
<td>2.24</td>
<td>0.91</td>
<td>-0.616</td>
</tr>
<tr>
<td>35</td>
<td>801</td>
<td>2.29</td>
<td>0.92</td>
<td>-0.596</td>
</tr>
<tr>
<td>40</td>
<td>807</td>
<td>2.28</td>
<td>0.92</td>
<td>-0.616</td>
</tr>
<tr>
<td>55</td>
<td>819.3</td>
<td>2.32</td>
<td>0.94</td>
<td>-0.616</td>
</tr>
<tr>
<td>80</td>
<td>827</td>
<td>2.36</td>
<td>0.95</td>
<td>-0.596</td>
</tr>
<tr>
<td>130</td>
<td>835</td>
<td>2.54</td>
<td>0.96</td>
<td>-0.616</td>
</tr>
<tr>
<td>280</td>
<td>874</td>
<td>2.72</td>
<td>1</td>
<td>-0.616</td>
</tr>
<tr>
<td>530</td>
<td>862</td>
<td>2.89</td>
<td>0.99</td>
<td>-0.636</td>
</tr>
<tr>
<td>1004</td>
<td>606.86</td>
<td>2.15</td>
<td>0.69</td>
<td>-0.616</td>
</tr>
<tr>
<td>1030</td>
<td>590.2</td>
<td>2.13</td>
<td>0.68</td>
<td>-0.616</td>
</tr>
</tbody>
</table>
Table S3 Comparison of the best values of current density in the anodic scan \((J_f) \) and \(I_f/I_b \) ratio of some Pd based electrocatalyst for methanol and ethanol oxidation.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(J_f) (MeOH/KOH)</th>
<th>(J_f) (EtOH/KOH)</th>
<th>(I_f/I_b) (MeOH)</th>
<th>(I_f/I_b) (EtOH)</th>
<th>Reference electrode</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDG/Pd</td>
<td>27.6 (mA cm(^{-2}))</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Hg/HgO</td>
<td>1</td>
</tr>
<tr>
<td>Porous Pd</td>
<td>238 (A g(^{-1}) Pd)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Hg/HgO</td>
<td>2</td>
</tr>
<tr>
<td>Pd/CNT</td>
<td>274.5 (A g(^{-1}) Pd)</td>
<td>135 (A g(^{-1}) Pd)</td>
<td><1</td>
<td><1</td>
<td>Hg/HgO</td>
<td>3</td>
</tr>
<tr>
<td>Pd/graphene</td>
<td>N/A</td>
<td>0.56 (mA cm(^{-2}))</td>
<td>N/A</td>
<td>4.0</td>
<td>Ag/AgCl</td>
<td>4</td>
</tr>
<tr>
<td>Pd/graphene</td>
<td>522 (A g(^{-1}) Pd)</td>
<td>N/A</td>
<td>6.05</td>
<td>N/A</td>
<td>SCE</td>
<td>5</td>
</tr>
<tr>
<td>Pd/C</td>
<td>N/A</td>
<td>102.8 (A g(^{-1}))</td>
<td>N/A</td>
<td>0.7</td>
<td>Hg/HgO</td>
<td>6</td>
</tr>
<tr>
<td>Pd/C</td>
<td>N/A</td>
<td>114 (mA cm(^{-2}))</td>
<td>N/A</td>
<td>N/A</td>
<td>Hg/HgO</td>
<td>7</td>
</tr>
<tr>
<td>Pd-F/CNT</td>
<td>32.7 (mA cm(^{-2}))</td>
<td>N/A</td>
<td>3.13</td>
<td>N/A</td>
<td>SCE</td>
<td>8</td>
</tr>
<tr>
<td>Pd/LDH-NWs</td>
<td>N/A</td>
<td>2.01 (mA cm(^{-2}))</td>
<td>N/A</td>
<td>0.91</td>
<td>Hg/HgO</td>
<td>9</td>
</tr>
<tr>
<td>Pd nanocubes</td>
<td>15.6 (A g(^{-1}))</td>
<td>18.72 (A g(^{-1}))</td>
<td>2</td>
<td><1</td>
<td>NHE</td>
<td>10</td>
</tr>
<tr>
<td>0.8 wt.%</td>
<td>N/A</td>
<td>394.7 (A g(^{-1}))</td>
<td>N/A</td>
<td>2.66</td>
<td>SCE</td>
<td>This</td>
</tr>
<tr>
<td>Pd/GA/NF</td>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>work</td>
</tr>
<tr>
<td>2.17 wt.%</td>
<td>187.3 (A g(^{-1}))</td>
<td>914.7 (A g(^{-1}))</td>
<td>2.58</td>
<td>1.97</td>
<td>SCE</td>
<td>This</td>
</tr>
<tr>
<td>Pd/GA/NF</td>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>work</td>
</tr>
<tr>
<td>7.65 wt.%</td>
<td>798.8 (A g(^{-1}))</td>
<td>874 (A g(^{-1}) Pd)</td>
<td>3.11</td>
<td>2.72</td>
<td>SCE</td>
<td>This</td>
</tr>
<tr>
<td>Pd/GA/NF</td>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>work</td>
</tr>
</tbody>
</table>
References:

