Tuning Energy Band-gap of Gallium Oxide Crystalline to Enhance Photoelectrochemical Water Splitting: Mixed-phase Junctions

Ming-Gang Ju1,2, Xiang Wang1,4, WanZhen Liang1,3,*, Yi Zhao1,3,*, and Can Li1,4,*

1 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
2 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
3 State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
4 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China

(Dated: August 5, 2014)

TABLE I: The calculated lattice constants of α-Ga$_2$O$_3$ and β-Ga$_2$O$_3$ with the energy cutoff of 520 eV.

<table>
<thead>
<tr>
<th></th>
<th>α-Ga$_2$O$_3$</th>
<th>β-Ga$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(Å)</td>
<td>5.05</td>
<td>12.44</td>
</tr>
<tr>
<td>b(Å)</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>c(Å)</td>
<td>13.63</td>
<td>5.87</td>
</tr>
<tr>
<td>γ(degree)</td>
<td>103.8</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: The total DOS of α-Ga$_2$O$_3$ and β-Ga$_2$O$_3$ by PBE.
Fig. 2: The total and projected DOS of per formula unit of α–Ga₂O₃ and β–Ga₂O₃ calculated by HSE06 functional. The conduction band are zoom in. The Fermi level is set to zero.

Fig. 3: The differences of PAC for the heterostructures (b-type) with the crystal axis angle(101°).
Fig. 4: The total DOS of periodic slab model of the heterostructures (α) with the different crystal axis angles 95° (left) and 101° (right).

Fig. 5: The LDOS of periodic slab model of the heterostructures (α) with the different crystal axis angles 95°, (left) and 101° (right).
Fig. 6: The optical absorption curves of the mixed-phase and the two pure phases by PBE.

Fig. 7: The calculated energies of b-type heterostructures A1-B1 with different lengths and the most stable heterostructure with length 45.8 Å. ($\phi = 101^\circ$)

Fig. 8: The total DOS of b-type heterostructures A1-B1 with length 45.8 Å. ($\phi = 101^\circ$)
Fig. 9: The LDOSs of b-type heterostructures A1-B1 with length 45.8 Å ($\phi = 101^\circ$)
* Electronic address: liangwz@xmu.edu.cn, yizhao@xmu.edu.cn, canli@dicp.ac.cn