Supporting Information

for

Polythiophenoazomethines – Alternate Photoactive Materials for Photovoltaics

Andréeanne Bolduc,a,c Satyananda Barik,a,d Martin R. Lenze,b Klaus Meerholz,b* W. G. Skenea*

aLaboratoire de caractérisation photophysique des matériaux conjugués
 Département de chimie, Pavillon JA Bombardier,
 University of Montreal, CP 6128, succ. Centre-ville,
 Montreal, Quebec, Canada H3T 2B1

bDepartment of Chemistry
 University of Cologne
 Luxemburger Str. 116, 50939
 Cologne, Germany

cCurrent address: Molecular Science and Technology
 Department of Chemical Engineering and Chemistry
 Eindhoven University of Technology
 Den Dolech 2, 5612 AZ, P.O. Box 513
 5600 MB Eindhoven
 The Netherlands

dCurrent address: Institute of Chemical and Engineering Sciences (A*STAR)
 1 Pesek Road, Jurong Island
 Singapore-627833

Corresponding authors: w.skene@umontreal.ca; klaus.meerholz@uni-koeln.de
Table of Contents

Figure S1. 1H NMR spectrum of 3-(2-ethylhexyl) thiophene... 3
Figure S2. 13C NMR spectrum of 3-(2-ethylhexyl) thiophene. ... 4
Figure S3. 1H NMR spectrum of 3-(2-ethylhexyl) thiophene-2,5-dicarbaldehyde. 5
Figure S4. 13C NMR spectrum of 3-(2-ethylhexyl) thiophene-2,5-dicarbaldehyde. 6
Figure S5. 1H NMR spectrum of 2.. 7
Figure S6. FT-IR spectrum of 1... 8
Figure S7. FT-IR spectrum of 2... 9
Figure S8. Normalized absorbance of 2 in dichloromethane.. 10
Figure S9. Absorbance of 1 as a function of concentration between 0.13 and 2 mg/mL in chloroform. Inset: absorbance of 1 at 625 nm as a function of concentration................................. 11
Figure 10. Cyclic voltammogram of 2 in dichloromethane measured at 100 mV/sec with TBAPF$_6$ against Ag/AgCl (sat’d) electrode in anhydrous dichloromethane............................... 12
Figure S11. Thermal gravimetric analysis of 2.. 13
Figure S13. Differential scanning calorimetry thermograms of 2... 14
Figure S14. GPC elugram of 2... 15
Figure S15. Unoptimized photovoltaic device power conversion efficiency as a function of the PC$_{60}$BM content: 1 (■) and 3 (●). ... 16
Figure S16. Unoptimized photovoltaic device power conversion efficiency with 1:4 1:PC$_{60}$BM ratio as a function of spin coating speed/film thickness and donor/acceptor concentration: 10 (●) and 20 (■) mg/mL in chlorobenzene. ... 17
Figure S17. AFM topology image of 1:4 1:PC$_{60}$BM blend in noncontact mode of 5 x 5 μm area. ... 18
Figure S18. AFM image of 1:4 1:PC$_{60}$BM blend in noncontact mode of 5 x 5 μm area showing the roughness. ... 19
Figure S1. 1H NMR spectrum of 3-(2-ethylhexyl) thiophene.
Figure S2. 13C NMR spectrum of 3-(2-ethylhexyl) thiophene.
Figure S3. 1H NMR spectrum of 3-(2-ethylhexyl) thiophene-2,5-dicarbaldehyde.
Figure S4. 13C NMR spectrum of 3-(2-ethylhexyl) thiophene-2,5-dicarbaldehyde.
Figure S5. 1H NMR spectrum of 2.
Figure S6. FT-IR spectrum of 1.
Figure S7. FT-IR spectrum of 2.
Figure S8. Normalized absorbance of 2 in dichloromethane.
Figure S9. Absorbance of 1 as a function of concentration between 0.13 and 2 mg/mL in chloroform. Inset: absorbance of 1 at 625 nm as a function of concentration.
Figure 10. Cyclic voltammogram of 2 in dichloromethane measured at 100 mV/sec with TBAPF₆ against Ag/AgCl (sat’d) electrode in anhydrous dichloromethane.
Figure S11. Thermal gravimetric analysis of 2.
Figure S12. Differential scanning calorimetry thermograms of 2.
Figure S13. GPC elugram of 2.
Figure S14. Unoptimized photovoltaic device power conversion efficiency as a function of the PC_{60}BM content: 1 (■) and 3 (●).
Figure S15. Unoptimized photovoltaic device power conversion efficiency with 1:4 1:PC₆₀BM ratio as a function of spin coating speed/film thickness and donor/acceptor concentration: 10 (●) and 20 (■) mg/mL in chlorobenzene.
Figure S16. AFM topology image of 1:4 1:PC_{60}BM blend in noncontact mode of 5 x 5 μm area.
Figure S17. AFM image of 1:4 1:PC_{60}BM blend in noncontact mode of 5 x 5 μm area showing the roughness.