Supporting Information (3 pages)

Effect of Fractal Silver Electrodes on Charge Collection and Light Distribution in Semiconducting Organic Polymer Films

[a] Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616 (USA), Fax: (+1)5307528995, Email: fosterloh@ucdavis.edu

[b] Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (USA)

[c] Department of Physics, University of Oregon, Eugene, 1585 E. 13th Ave., Eugene, OR 97403 (USA)

[d] Dept. of Electrical, Computer, and Energy Engineering, Renewable and Sustainable Energy Institute, University of Colorado at Boulder, UCB 425, Boulder, CO 80309

[e] School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343

[f] Chemical and Materials Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401
Figure S1. Scanning electron microscopy images of fractal silver on FTO obtained by electrodeposition at -0.85 V vs NHE for 300 s from an aqueous solution of 0.005 M Ag$_2$SO$_4$, 0.01 M H$_2$SO$_4$, and 0.5 M Na$_2$SO$_4$.
Figure S2. Representative profilometer traces for non-coated and polymer coated silver fractal films. Polymer thickness (600 nm) was calculated by subtracting the baseline of the fractal silver (200 nm) from the baseline of the polymer-coated film (800 nm). Mean fractal heights are also shown.