Supporting Information for

Better Lithium-Ion Storage Materials Made through Hierarchical Assemblies of Active Nanocrystals and Nanorods

Chao Lei, Zheng Chen, Hiesang Sohn, Xiaolei Wang, Zaiyuan Le, Ding Weng, Meiqing Shen, Ge Wang and Yunfeng Lu

aKey Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 30072, P. R. China, bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA, E-mail: luucla@ucla.edu, cSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China, E-mail: gewang@mater.ustb.edu.cn

(a)

Volume adsorbed (cm3 \cdot g$^{-1}$) vs. Relative pressure (P/P_0)
Figure S1. Nitrogen adsorption/desorption isotherms (a) and pore size distributions (b) of V_2O_5 nanorod spheres and commercial V_2O_5 particles.

Table S1. BET surface area, pore volume and average pore size of V_2O_5 nanorod spheres, commercial V_2O_5 particles, LiV_3O_8 nanorod spheres, Fe_3O_4 nanocrystal spheres and Fe_3O_4 nanocrystals.

<table>
<thead>
<tr>
<th>Samples</th>
<th>BET Surface Area (m^2/g)</th>
<th>Pore Volume (cm^3/g)</th>
<th>Average Pore Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2O_5 nanorod spheres</td>
<td>13.4</td>
<td>0.061</td>
<td>31.2</td>
</tr>
<tr>
<td>Commercial V_2O_5 particles</td>
<td>5.9</td>
<td>0.033</td>
<td>30.6</td>
</tr>
<tr>
<td>LiV_3O_8 nanorod spheres</td>
<td>13.6</td>
<td>0.094</td>
<td>30.9</td>
</tr>
<tr>
<td>Fe_3O_4 nanocrystal spheres</td>
<td>23.8</td>
<td>0.135</td>
<td>24.0</td>
</tr>
<tr>
<td>Fe_3O_4 nanocrystals</td>
<td>120.8</td>
<td>0.301</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Figure S2. The CV curves of V$_2$O$_5$ nanorod spheres for the first three cycles in a voltage range of 1.8 to 4.0 V vs. Li/Li$^+$ at a scan rate of 1 mV s$^{-1}$. The peak currents were normalized to active mass.

Figure S3. SEM image of V$_2$O$_5$ particles after crashing the nanorod-sphere structure.
Figure S4. Rate-capability of electrode made from commercial V$_2$O$_5$ particles cycled between 1.8 and 4.0 V at different current densities of 70, 140, 280, 1400 mA g$^{-1}$, respectively.

Figure S5. SEM image of LiV$_3$O$_8$ particles after crashing the nanorod-sphere structure.
Figure S6. XRD patterns of the Fe₃O₄ nanocrystal spheres.