Supporting Materials For

Cellulose Derived Magnetic Mesoporous Carbon Nanocomposites with Enhanced Hexavalent Chromium Removal

Bin Qiu,1,2 Hongbo Gu,1 Xingru Yan,1,3 Jiang Guo,1,3 Yiran Wang,1 Dezhi Sun,2* Qiang Wang,2 Mojammel Khan,4 Xin Zhang,5 Brandon L. Weeks,5 David P. Young,5 Zhanhu Guo,1* and Suying Wei3*

1Integrated Composites Laboratory (ICL)
Dan F Smith Department of Chemical Engineering
Lamar University, Beaumont, TX 77710 USA

2College of Environmental Science and Engineering
Beijing Forestry University, Beijing, 100083 China

3Department of Chemistry and Biochemistry
Lamar University, Beaumont, TX 77710 USA

4Department of Physics and Astronomy
Louisiana State University, Baton Rouge, LA 70803 USA

5Department of Chemical Engineering
Texas Technology University, Lubbock, TX 79409 USA

*: to whom the correspondence should be addressed

sundezhi@bjfu.edu.cn (D. S.)

zhanhu.guo@lamar.edu (Z. G.)

suying.wei@lamar.edu (S. W.)
Fig. S1 (A) Nitrogen adsorption and desorption isotherm, and (B) pore size distribution of the as-received Fe$_3$O$_4$ nanoparticles.

Fig. S2 pH value change in solutions after treated by (A) MC-O and (B) MC-N.
Fig. S3 SEM images and EDX (inserted) of the (A) MC-O and (B) MC-N treated by 1000 mg/L Cr(VI) at an initial pH of 3.0.

Fig. S4 Separations of MC-O and MC-N from treated solutions by magnet.