Supporting Information

Micelle Anchored In-situ Synthesis of V₂O₃ nanoflakes@C composites for supercapacitors

Hong-Yi Li,⁶⁺ Kai Jiao,⁶ Liang Wang,⁶ Chuang Wei,⁶ Xinlu Li⁶ and Bing Xie⁶

⁶College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

E-mail: lihongyipku@gmail.com; Fax: +86-23-65127306; Tel: +86-23-65102469.

⁶State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, Sichuan Province 617000, China.
Fig. S1 Raman spectra of activated carbon
Fig. S2 ATR-FTIR spectra of activated carbon and V$_2$O$_3$ nanoflakes@C composites
**Fig. S3** TGA curves of (a) pure V$_2$O$_3$, (b) V$_2$O$_3$ nanoflakes@C composites and (c) activated carbon in air.
Fig. S4 EDS spectrum of $V_2O_3$ nanoflakes@C composites
Fig. S5 $\text{N}_2$ adsorption/desorption isotherms and BJH pore-size distribution plots (inset) of (a) $\text{V}_2\text{O}_3$ nanoflakes@C composites and (b) bulk $\text{V}_2\text{O}_3$.

◆ desorption; ● adsorption
Fig. S6 Comparable Nyquist plots obtained over the frequency range of 100 kHz to 0.01 Hz.
Fig. S7 CV curves (a) and charge/discharge curves (b) of physical mixture V$_2$O$_3$/C.
Fig. S8 Specific capacitance changes with (a) concentration of CTAB and (b) NH$_4$VO$_3$/C mass ratio.